library(“gapminder”) head(gapminder)
This is an R Markdown Notebook. When you execute code within the notebook, the results appear beneath the code.
Try executing this chunk by clicking the Run button within the chunk or by placing your cursor inside it and pressing Ctrl+Shift+Enter.
gapminder %>%
filter(country == "China")
[90m# A tibble: 12 x 6[39m
country continent year lifeExp pop gdpPercap
[3m[90m<fct>[39m[23m [3m[90m<fct>[39m[23m [3m[90m<int>[39m[23m [3m[90m<dbl>[39m[23m [3m[90m<int>[39m[23m [3m[90m<dbl>[39m[23m
[90m 1[39m China Asia [4m1[24m952 44 556[4m2[24m[4m6[24m[4m3[24m527 400.
[90m 2[39m China Asia [4m1[24m957 50.5 637[4m4[24m[4m0[24m[4m8[24m000 576.
[90m 3[39m China Asia [4m1[24m962 44.5 665[4m7[24m[4m7[24m[4m0[24m000 488.
[90m 4[39m China Asia [4m1[24m967 58.4 754[4m5[24m[4m5[24m[4m0[24m000 613.
[90m 5[39m China Asia [4m1[24m972 63.1 862[4m0[24m[4m3[24m[4m0[24m000 677.
[90m 6[39m China Asia [4m1[24m977 64.0 943[4m4[24m[4m5[24m[4m5[24m000 741.
[90m 7[39m China Asia [4m1[24m982 65.5 [4m1[24m000[4m2[24m[4m8[24m[4m1[24m000 962.
[90m 8[39m China Asia [4m1[24m987 67.3 [4m1[24m084[4m0[24m[4m3[24m[4m5[24m000 [4m1[24m379.
[90m 9[39m China Asia [4m1[24m992 68.7 [4m1[24m164[4m9[24m[4m7[24m[4m0[24m000 [4m1[24m656.
[90m10[39m China Asia [4m1[24m997 70.4 [4m1[24m230[4m0[24m[4m7[24m[4m5[24m000 [4m2[24m289.
[90m11[39m China Asia [4m2[24m002 72.0 [4m1[24m280[4m4[24m[4m0[24m[4m0[24m000 [4m3[24m119.
[90m12[39m China Asia [4m2[24m007 73.0 [4m1[24m318[4m6[24m[4m8[24m[4m3[24m096 [4m4[24m959.
gapminder %>%
filter(country=="India")
[90m# A tibble: 12 x 6[39m
country continent year lifeExp pop gdpPercap
[3m[90m<fct>[39m[23m [3m[90m<fct>[39m[23m [3m[90m<int>[39m[23m [3m[90m<dbl>[39m[23m [3m[90m<int>[39m[23m [3m[90m<dbl>[39m[23m
[90m 1[39m India Asia [4m1[24m952 37.4 372[4m0[24m[4m0[24m[4m0[24m000 547.
[90m 2[39m India Asia [4m1[24m957 40.2 409[4m0[24m[4m0[24m[4m0[24m000 590.
[90m 3[39m India Asia [4m1[24m962 43.6 454[4m0[24m[4m0[24m[4m0[24m000 658.
[90m 4[39m India Asia [4m1[24m967 47.2 506[4m0[24m[4m0[24m[4m0[24m000 701.
[90m 5[39m India Asia [4m1[24m972 50.7 567[4m0[24m[4m0[24m[4m0[24m000 724.
[90m 6[39m India Asia [4m1[24m977 54.2 634[4m0[24m[4m0[24m[4m0[24m000 813.
[90m 7[39m India Asia [4m1[24m982 56.6 708[4m0[24m[4m0[24m[4m0[24m000 856.
[90m 8[39m India Asia [4m1[24m987 58.6 788[4m0[24m[4m0[24m[4m0[24m000 977.
[90m 9[39m India Asia [4m1[24m992 60.2 872[4m0[24m[4m0[24m[4m0[24m000 [4m1[24m164.
[90m10[39m India Asia [4m1[24m997 61.8 959[4m0[24m[4m0[24m[4m0[24m000 [4m1[24m459.
[90m11[39m India Asia [4m2[24m002 62.9 [4m1[24m034[4m1[24m[4m7[24m[4m2[24m547 [4m1[24m747.
[90m12[39m India Asia [4m2[24m007 64.7 [4m1[24m110[4m3[24m[4m9[24m[4m6[24m331 [4m2[24m452.
gapminder %>%
filter(gdpPercap>500)
[90m# A tibble: 1,641 x 6[39m
country continent year lifeExp pop gdpPercap
[3m[90m<fct>[39m[23m [3m[90m<fct>[39m[23m [3m[90m<int>[39m[23m [3m[90m<dbl>[39m[23m [3m[90m<int>[39m[23m [3m[90m<dbl>[39m[23m
[90m 1[39m Afghanistan Asia [4m1[24m952 28.8 8[4m4[24m[4m2[24m[4m5[24m333 779.
[90m 2[39m Afghanistan Asia [4m1[24m957 30.3 9[4m2[24m[4m4[24m[4m0[24m934 821.
[90m 3[39m Afghanistan Asia [4m1[24m962 32.0 10[4m2[24m[4m6[24m[4m7[24m083 853.
[90m 4[39m Afghanistan Asia [4m1[24m967 34.0 11[4m5[24m[4m3[24m[4m7[24m966 836.
[90m 5[39m Afghanistan Asia [4m1[24m972 36.1 13[4m0[24m[4m7[24m[4m9[24m460 740.
[90m 6[39m Afghanistan Asia [4m1[24m977 38.4 14[4m8[24m[4m8[24m[4m0[24m372 786.
[90m 7[39m Afghanistan Asia [4m1[24m982 39.9 12[4m8[24m[4m8[24m[4m1[24m816 978.
[90m 8[39m Afghanistan Asia [4m1[24m987 40.8 13[4m8[24m[4m6[24m[4m7[24m957 852.
[90m 9[39m Afghanistan Asia [4m1[24m992 41.7 16[4m3[24m[4m1[24m[4m7[24m921 649.
[90m10[39m Afghanistan Asia [4m1[24m997 41.8 22[4m2[24m[4m2[24m[4m7[24m415 635.
[90m# ... with 1,631 more rows[39m
gapminder%>%
filter(year == 1997)
[90m# A tibble: 142 x 6[39m
country continent year lifeExp pop gdpPercap
[3m[90m<fct>[39m[23m [3m[90m<fct>[39m[23m [3m[90m<int>[39m[23m [3m[90m<dbl>[39m[23m [3m[90m<int>[39m[23m [3m[90m<dbl>[39m[23m
[90m 1[39m Afghanistan Asia [4m1[24m997 41.8 22[4m2[24m[4m2[24m[4m7[24m415 635.
[90m 2[39m Albania Europe [4m1[24m997 73.0 3[4m4[24m[4m2[24m[4m8[24m038 [4m3[24m193.
[90m 3[39m Algeria Africa [4m1[24m997 69.2 29[4m0[24m[4m7[24m[4m2[24m015 [4m4[24m797.
[90m 4[39m Angola Africa [4m1[24m997 41.0 9[4m8[24m[4m7[24m[4m5[24m024 [4m2[24m277.
[90m 5[39m Argentina Americas [4m1[24m997 73.3 36[4m2[24m[4m0[24m[4m3[24m463 [4m1[24m[4m0[24m967.
[90m 6[39m Australia Oceania [4m1[24m997 78.8 18[4m5[24m[4m6[24m[4m5[24m243 [4m2[24m[4m6[24m998.
[90m 7[39m Austria Europe [4m1[24m997 77.5 8[4m0[24m[4m6[24m[4m9[24m876 [4m2[24m[4m9[24m096.
[90m 8[39m Bahrain Asia [4m1[24m997 73.9 [4m5[24m[4m9[24m[4m8[24m561 [4m2[24m[4m0[24m292.
[90m 9[39m Bangladesh Asia [4m1[24m997 59.4 123[4m3[24m[4m1[24m[4m5[24m288 973.
[90m10[39m Belgium Europe [4m1[24m997 77.5 10[4m1[24m[4m9[24m[4m9[24m787 [4m2[24m[4m7[24m561.
[90m# ... with 132 more rows[39m
gapminder%>%
filter(continent=="Europe" & year=="1997")
[90m# A tibble: 30 x 6[39m
country continent year lifeExp pop gdpPercap
[3m[90m<fct>[39m[23m [3m[90m<fct>[39m[23m [3m[90m<int>[39m[23m [3m[90m<dbl>[39m[23m [3m[90m<int>[39m[23m [3m[90m<dbl>[39m[23m
[90m 1[39m Albania Europe [4m1[24m997 73.0 3[4m4[24m[4m2[24m[4m8[24m038 [4m3[24m193.
[90m 2[39m Austria Europe [4m1[24m997 77.5 8[4m0[24m[4m6[24m[4m9[24m876 [4m2[24m[4m9[24m096.
[90m 3[39m Belgium Europe [4m1[24m997 77.5 10[4m1[24m[4m9[24m[4m9[24m787 [4m2[24m[4m7[24m561.
[90m 4[39m Bosnia and Herzegovina Europe [4m1[24m997 73.2 3[4m6[24m[4m0[24m[4m7[24m000 [4m4[24m766.
[90m 5[39m Bulgaria Europe [4m1[24m997 70.3 8[4m0[24m[4m6[24m[4m6[24m057 [4m5[24m970.
[90m 6[39m Croatia Europe [4m1[24m997 73.7 4[4m4[24m[4m4[24m[4m4[24m595 [4m9[24m876.
[90m 7[39m Czech Republic Europe [4m1[24m997 74.0 10[4m3[24m[4m0[24m[4m0[24m707 [4m1[24m[4m6[24m049.
[90m 8[39m Denmark Europe [4m1[24m997 76.1 5[4m2[24m[4m8[24m[4m3[24m663 [4m2[24m[4m9[24m804.
[90m 9[39m Finland Europe [4m1[24m997 77.1 5[4m1[24m[4m3[24m[4m4[24m406 [4m2[24m[4m3[24m724.
[90m10[39m France Europe [4m1[24m997 78.6 58[4m6[24m[4m2[24m[4m3[24m428 [4m2[24m[4m5[24m890.
[90m# ... with 20 more rows[39m
gapminder%>%
filter(continent=="Asia" & year=="2007")
Add a new chunk by clicking the Insert Chunk button on the toolbar or by pressing Ctrl+Alt+I.
When you save the notebook, an HTML file containing the code and output will be saved alongside it (click the Preview button or press Ctrl+Shift+K to preview the HTML file).
The preview shows you a rendered HTML copy of the contents of the editor. Consequently, unlike Knit, Preview does not run any R code chunks. Instead, the output of the chunk when it was last run in the editor is displayed.