library(“gapminder”) head(gapminder)

This is an R Markdown Notebook. When you execute code within the notebook, the results appear beneath the code.

Try executing this chunk by clicking the Run button within the chunk or by placing your cursor inside it and pressing Ctrl+Shift+Enter.

gapminder %>%
  filter(country == "China")
# A tibble: 12 x 6
   country continent  year lifeExp        pop gdpPercap
   <fct>   <fct>     <int>   <dbl>      <int>     <dbl>
 1 China   Asia       1952    44    556263527      400.
 2 China   Asia       1957    50.5  637408000      576.
 3 China   Asia       1962    44.5  665770000      488.
 4 China   Asia       1967    58.4  754550000      613.
 5 China   Asia       1972    63.1  862030000      677.
 6 China   Asia       1977    64.0  943455000      741.
 7 China   Asia       1982    65.5 1000281000      962.
 8 China   Asia       1987    67.3 1084035000     1379.
 9 China   Asia       1992    68.7 1164970000     1656.
10 China   Asia       1997    70.4 1230075000     2289.
11 China   Asia       2002    72.0 1280400000     3119.
12 China   Asia       2007    73.0 1318683096     4959.
gapminder %>%
  filter(country=="India")
# A tibble: 12 x 6
   country continent  year lifeExp        pop gdpPercap
   <fct>   <fct>     <int>   <dbl>      <int>     <dbl>
 1 India   Asia       1952    37.4  372000000      547.
 2 India   Asia       1957    40.2  409000000      590.
 3 India   Asia       1962    43.6  454000000      658.
 4 India   Asia       1967    47.2  506000000      701.
 5 India   Asia       1972    50.7  567000000      724.
 6 India   Asia       1977    54.2  634000000      813.
 7 India   Asia       1982    56.6  708000000      856.
 8 India   Asia       1987    58.6  788000000      977.
 9 India   Asia       1992    60.2  872000000     1164.
10 India   Asia       1997    61.8  959000000     1459.
11 India   Asia       2002    62.9 1034172547     1747.
12 India   Asia       2007    64.7 1110396331     2452.
gapminder %>%
  filter(gdpPercap>500)
# A tibble: 1,641 x 6
   country     continent  year lifeExp      pop gdpPercap
   <fct>       <fct>     <int>   <dbl>    <int>     <dbl>
 1 Afghanistan Asia       1952    28.8  8425333      779.
 2 Afghanistan Asia       1957    30.3  9240934      821.
 3 Afghanistan Asia       1962    32.0 10267083      853.
 4 Afghanistan Asia       1967    34.0 11537966      836.
 5 Afghanistan Asia       1972    36.1 13079460      740.
 6 Afghanistan Asia       1977    38.4 14880372      786.
 7 Afghanistan Asia       1982    39.9 12881816      978.
 8 Afghanistan Asia       1987    40.8 13867957      852.
 9 Afghanistan Asia       1992    41.7 16317921      649.
10 Afghanistan Asia       1997    41.8 22227415      635.
# ... with 1,631 more rows
gapminder%>%
  filter(year == 1997)
# A tibble: 142 x 6
   country     continent  year lifeExp       pop gdpPercap
   <fct>       <fct>     <int>   <dbl>     <int>     <dbl>
 1 Afghanistan Asia       1997    41.8  22227415      635.
 2 Albania     Europe     1997    73.0   3428038     3193.
 3 Algeria     Africa     1997    69.2  29072015     4797.
 4 Angola      Africa     1997    41.0   9875024     2277.
 5 Argentina   Americas   1997    73.3  36203463    10967.
 6 Australia   Oceania    1997    78.8  18565243    26998.
 7 Austria     Europe     1997    77.5   8069876    29096.
 8 Bahrain     Asia       1997    73.9    598561    20292.
 9 Bangladesh  Asia       1997    59.4 123315288      973.
10 Belgium     Europe     1997    77.5  10199787    27561.
# ... with 132 more rows
gapminder%>%
  filter(continent=="Europe" & year=="1997")
# A tibble: 30 x 6
   country                continent  year lifeExp      pop gdpPercap
   <fct>                  <fct>     <int>   <dbl>    <int>     <dbl>
 1 Albania                Europe     1997    73.0  3428038     3193.
 2 Austria                Europe     1997    77.5  8069876    29096.
 3 Belgium                Europe     1997    77.5 10199787    27561.
 4 Bosnia and Herzegovina Europe     1997    73.2  3607000     4766.
 5 Bulgaria               Europe     1997    70.3  8066057     5970.
 6 Croatia                Europe     1997    73.7  4444595     9876.
 7 Czech Republic         Europe     1997    74.0 10300707    16049.
 8 Denmark                Europe     1997    76.1  5283663    29804.
 9 Finland                Europe     1997    77.1  5134406    23724.
10 France                 Europe     1997    78.6 58623428    25890.
# ... with 20 more rows
gapminder%>%
  filter(continent=="Asia" & year=="2007")

Add a new chunk by clicking the Insert Chunk button on the toolbar or by pressing Ctrl+Alt+I.

When you save the notebook, an HTML file containing the code and output will be saved alongside it (click the Preview button or press Ctrl+Shift+K to preview the HTML file).

The preview shows you a rendered HTML copy of the contents of the editor. Consequently, unlike Knit, Preview does not run any R code chunks. Instead, the output of the chunk when it was last run in the editor is displayed.

LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6DQogIHBkZl9kb2N1bWVudDogZGVmYXVsdA0KICBodG1sX25vdGVib29rOiBkZWZhdWx0DQotLS0NCmxpYnJhcnkoImdhcG1pbmRlciIpDQpoZWFkKGdhcG1pbmRlcikNCg0KVGhpcyBpcyBhbiBbUiBNYXJrZG93bl0oaHR0cDovL3JtYXJrZG93bi5yc3R1ZGlvLmNvbSkgTm90ZWJvb2suIFdoZW4geW91IGV4ZWN1dGUgY29kZSB3aXRoaW4gdGhlIG5vdGVib29rLCB0aGUgcmVzdWx0cyBhcHBlYXIgYmVuZWF0aCB0aGUgY29kZS4gDQoNClRyeSBleGVjdXRpbmcgdGhpcyBjaHVuayBieSBjbGlja2luZyB0aGUgKlJ1biogYnV0dG9uIHdpdGhpbiB0aGUgY2h1bmsgb3IgYnkgcGxhY2luZyB5b3VyIGN1cnNvciBpbnNpZGUgaXQgYW5kIHByZXNzaW5nICpDdHJsK1NoaWZ0K0VudGVyKi4gDQoNCmBgYHtyfQ0KZ2FwbWluZGVyICU+JQ0KICBmaWx0ZXIoY291bnRyeSA9PSAiQ2hpbmEiKQ0KYGBgDQoNCmBgYHtyfQ0KZ2FwbWluZGVyICU+JQ0KICBmaWx0ZXIoY291bnRyeT09IkluZGlhIikNCmBgYA0KDQpgYGB7cn0NCmdhcG1pbmRlciAlPiUNCiAgZmlsdGVyKGdkcFBlcmNhcD41MDApDQpgYGANCg0KYGBge3J9DQpnYXBtaW5kZXIlPiUNCiAgZmlsdGVyKHllYXIgPT0gMTk5NykNCmBgYA0KDQpgYGB7cn0NCmdhcG1pbmRlciU+JQ0KICBmaWx0ZXIoY29udGluZW50PT0iRXVyb3BlIiAmIHllYXI9PSIxOTk3IikNCmBgYA0KDQpgYGB7cn0NCmdhcG1pbmRlciU+JQ0KICBmaWx0ZXIoY29udGluZW50PT0iQXNpYSIgJiB5ZWFyPT0iMjAwNyIpDQpgYGANCg0KDQpBZGQgYSBuZXcgY2h1bmsgYnkgY2xpY2tpbmcgdGhlICpJbnNlcnQgQ2h1bmsqIGJ1dHRvbiBvbiB0aGUgdG9vbGJhciBvciBieSBwcmVzc2luZyAqQ3RybCtBbHQrSSouDQoNCldoZW4geW91IHNhdmUgdGhlIG5vdGVib29rLCBhbiBIVE1MIGZpbGUgY29udGFpbmluZyB0aGUgY29kZSBhbmQgb3V0cHV0IHdpbGwgYmUgc2F2ZWQgYWxvbmdzaWRlIGl0IChjbGljayB0aGUgKlByZXZpZXcqIGJ1dHRvbiBvciBwcmVzcyAqQ3RybCtTaGlmdCtLKiB0byBwcmV2aWV3IHRoZSBIVE1MIGZpbGUpLg0KDQpUaGUgcHJldmlldyBzaG93cyB5b3UgYSByZW5kZXJlZCBIVE1MIGNvcHkgb2YgdGhlIGNvbnRlbnRzIG9mIHRoZSBlZGl0b3IuIENvbnNlcXVlbnRseSwgdW5saWtlICpLbml0KiwgKlByZXZpZXcqIGRvZXMgbm90IHJ1biBhbnkgUiBjb2RlIGNodW5rcy4gSW5zdGVhZCwgdGhlIG91dHB1dCBvZiB0aGUgY2h1bmsgd2hlbiBpdCB3YXMgbGFzdCBydW4gaW4gdGhlIGVkaXRvciBpcyBkaXNwbGF5ZWQuDQo=