Loading packages

library(tidyverse)
## ── Attaching packages ─────────────────────────────────────────────────────────────────────────── tidyverse 1.2.1 ──
## ✔ ggplot2 2.2.1     ✔ purrr   0.2.4
## ✔ tibble  1.4.2     ✔ dplyr   0.7.4
## ✔ tidyr   0.8.0     ✔ stringr 1.2.0
## ✔ readr   1.1.1     ✔ forcats 0.2.0
## Warning: package 'tibble' was built under R version 3.4.3
## Warning: package 'tidyr' was built under R version 3.4.3
## ── Conflicts ────────────────────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
library(jmRtools)

Reading in data

LIWC <- read_csv("LIWC_Results_Revised.csv")
## Parsed with column specification:
## cols(
##   .default = col_double(),
##   Module = col_integer(),
##   Part = col_integer(),
##   SyncvAsync = col_character(),
##   Group = col_integer(),
##   Message = col_character(),
##   WC = col_integer()
## )
## See spec(...) for full column specifications.
## Warning in rbind(names(probs), probs_f): number of columns of result is not
## a multiple of vector length (arg 1)
## Warning: 7 parsing failures.
## row # A tibble: 5 x 5 col     row col   expected   actual file                       expected   <int> <chr> <chr>      <chr>  <chr>                      actual 1  2207 Part  an integer !      'LIWC_Results_Revised.csv' file 2  2208 Part  an integer !      'LIWC_Results_Revised.csv' row 3  2209 Part  an integer !      'LIWC_Results_Revised.csv' col 4  2210 Part  an integer !      'LIWC_Results_Revised.csv' expected 5  2211 Part  an integer !      'LIWC_Results_Revised.csv'
## ... ................. ... .......................................................... ........ .......................................................... ...... .......................................................... .... .......................................................... ... .......................................................... ... .......................................................... ........ ..........................................................
## See problems(...) for more details.
#View(LIWC)

MANOVA of variables of interest Looks like affect, posemo, and certain are significant (achieve is slightly significant)

fit<-manova(cbind(LIWC$Tone, LIWC$affect, LIWC$posemo, LIWC$negemo, LIWC$anx, LIWC$achieve, LIWC$affiliation, LIWC$discrep, LIWC$tentat, LIWC$certain) ~ LIWC$SyncvAsync, data = LIWC)
summary(fit, test="Pillai")
##                   Df   Pillai approx F num Df den Df    Pr(>F)    
## LIWC$SyncvAsync    1 0.012521   5.7149     10   4507 1.428e-08 ***
## Residuals       4516                                              
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary.aov(fit)
##  Response 1 :
##                   Df  Sum Sq Mean Sq F value Pr(>F)
## LIWC$SyncvAsync    1     892  891.71  0.6444 0.4222
## Residuals       4516 6249226 1383.80               
## 
##  Response 2 :
##                   Df  Sum Sq Mean Sq F value    Pr(>F)    
## LIWC$SyncvAsync    1    6788  6788.3  26.082 3.408e-07 ***
## Residuals       4516 1175379   260.3                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##  Response 3 :
##                   Df  Sum Sq Mean Sq F value    Pr(>F)    
## LIWC$SyncvAsync    1    6088  6087.7  24.024 9.846e-07 ***
## Residuals       4516 1144345   253.4                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##  Response 4 :
##                   Df Sum Sq Mean Sq F value Pr(>F)
## LIWC$SyncvAsync    1     27  27.250  1.6344 0.2012
## Residuals       4516  75295  16.673               
## 
##  Response 5 :
##                   Df Sum Sq Mean Sq F value Pr(>F)
## LIWC$SyncvAsync    1      0 0.00106   4e-04 0.9833
## Residuals       4516  10916 2.41724               
## 
##  Response 6 :
##                   Df Sum Sq Mean Sq F value  Pr(>F)  
## LIWC$SyncvAsync    1    111  111.04  5.0613 0.02451 *
## Residuals       4516  99079   21.94                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##  Response 7 :
##                   Df Sum Sq Mean Sq F value Pr(>F)
## LIWC$SyncvAsync    1     39  39.323  0.4589 0.4982
## Residuals       4516 386983  85.692               
## 
##  Response 8 :
##                   Df Sum Sq Mean Sq F value Pr(>F)
## LIWC$SyncvAsync    1     17  16.994  0.8216 0.3648
## Residuals       4516  93409  20.684               
## 
##  Response 9 :
##                   Df Sum Sq Mean Sq F value Pr(>F)
## LIWC$SyncvAsync    1     20  19.996  0.5698 0.4504
## Residuals       4516 158489  35.095               
## 
##  Response 10 :
##                   Df Sum Sq Mean Sq F value   Pr(>F)   
## LIWC$SyncvAsync    1    853  852.64   10.24 0.001384 **
## Residuals       4516 376040   83.27                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Looking at how many sync vs async responses we have (pretty skewed number)

table(LIWC$SyncvAsync)
## 
##    A    S 
##  780 3738

Creating two datasets for descriptives of sync vs async

Sync_LIWC <- LIWC %>%
  filter(SyncvAsync == "S")

ASync_LIWC <- LIWC %>%
  filter(SyncvAsync == "A")

Descriptives of significant difference variables for sync and async Affect

psych::describe(Sync_LIWC$affect)
##    vars    n mean    sd median trimmed  mad min max range skew kurtosis
## X1    1 3738 9.91 16.95   4.17       6 6.18   0 100   100 3.15    12.03
##      se
## X1 0.28
psych::describe(ASync_LIWC$affect)
##    vars   n mean    sd median trimmed  mad min max range skew kurtosis
## X1    1 780 6.67 11.39   4.04    4.43 5.99   0 100   100 4.81    31.25
##      se
## X1 0.41

Posemo

psych::describe(Sync_LIWC$posemo)
##    vars    n mean    sd median trimmed  mad min max range skew kurtosis
## X1    1 3738 8.77 16.72   1.48    4.78 2.19   0 100   100 3.38    13.55
##      se
## X1 0.27
psych::describe(ASync_LIWC$posemo)
##    vars   n mean    sd median trimmed  mad min max range skew kurtosis
## X1    1 780  5.7 11.32   2.65    3.36 3.93   0 100   100 5.09    33.75
##      se
## X1 0.41

Certain

psych::describe(Sync_LIWC$certain)
##    vars    n mean   sd median trimmed mad min max range skew kurtosis   se
## X1    1 3738 2.93 9.75      0     0.9   0   0 100   100 6.99    59.85 0.16
psych::describe(ASync_LIWC$certain)
##    vars   n mean   sd median trimmed mad min max range  skew kurtosis   se
## X1    1 780 1.78 5.15      0    0.89   0   0 100   100 11.44   188.08 0.18

Achievement

psych::describe(Sync_LIWC$achieve)
##    vars    n mean   sd median trimmed mad min max range skew kurtosis   se
## X1    1 3738 1.81 4.66      0    0.59   0   0  50    50 3.88    20.01 0.08
psych::describe(ASync_LIWC$achieve)
##    vars   n mean  sd median trimmed mad min   max range skew kurtosis   se
## X1    1 780 2.22 4.8      0    1.21   0   0 66.67 66.67 5.84    57.97 0.17