recall_lmer_longform <- read_delim("C:/Users/dasil/Dropbox/SCnegimages/Analysis_filesupdated/recall_lmer_longform.txt", "\t", escape_double = FALSE, trim_ws = TRUE)
Parsed with column specification:
cols(
  subID = col_integer(),
  JF = col_integer(),
  variable = col_character(),
  value = col_integer(),
  sociality = col_character(),
  valence = col_character()
)
recall_lmer_longform <- within(recall_lmer_longform, {
  SubID <- factor(subID)
  variable <- as.factor(variable) 
  sociality <- as.factor(sociality) 
  valence <- as.factor(valence) 
  })
negSocVSall<-c(-.2,1,-.2,-.2,-.2,-.2)
#contrasts(jf_neg_items$variable) <- cbind(negSocVSall)
negNSvsotherNS<-c(1,0,-.5,0,-.5,0)
#contrasts(jf_neg_items$variable) <- cbind(negNSvsotherNS)
contrasts(recall_lmer_longform$variable)<-cbind(negSocVSall,negNSvsotherNS )

compare the models and note differences between gaussian and binomial models:

m.old<-lmer(value~variable*scale(JF)+(1|subID),data=recall_lmer_longform) ###orignal model
summary(m.old)
Linear mixed model fit by REML 
t-tests use  Satterthwaite approximations to degrees of freedom ['lmerMod']
Formula: value ~ variable * scale(JF) + (1 | subID)
   Data: recall_lmer_longform

REML criterion at convergence: 1390.3

Scaled residuals: 
     Min       1Q   Median       3Q      Max 
-2.36257 -0.70489 -0.01487  0.65663  2.53505 

Random effects:
 Groups   Name        Variance Std.Dev.
 subID    (Intercept) 0.3196   0.5654  
 Residual             1.4033   1.1846  
Number of obs: 414, groups:  subID, 69

Fixed effects:
                                  Estimate Std. Error        df t value Pr(>|t|)    
(Intercept)                        2.41787    0.08957  67.00000  26.996  < 2e-16 ***
variablenegSocVSall                1.04589    0.13018 335.00000   8.034 1.64e-14 ***
variablenegNSvsotherNS             0.69565    0.11644 335.00000   5.974 5.90e-09 ***
variable                          -0.41322    0.14261 335.00000  -2.898  0.00401 ** 
variable                           0.70615    0.14261 335.00000   4.952 1.17e-06 ***
variable                           0.02156    0.14261 335.00000   0.151  0.87992    
scale(JF)                         -0.16585    0.08967  67.00000  -1.849  0.06881 .  
variablenegSocVSall:scale(JF)     -0.35037    0.13034 335.00000  -2.688  0.00755 ** 
variablenegNSvsotherNS:scale(JF)  -0.11226    0.11658 335.00000  -0.963  0.33626    
variable:scale(JF)                 0.22722    0.14278 335.00000   1.591  0.11246    
variable:scale(JF)                -0.11061    0.14278 335.00000  -0.775  0.43908    
variable:scale(JF)                 0.01442    0.14278 335.00000   0.101  0.91961    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Correlation of Fixed Effects:
            (Intr) vrbSVS vrNSNS varibl varibl varibl sc(JF) vSVS:( vNSNS: v:(JF) v:(JF)
vrblngScVSl 0.000                                                                       
vrblngNSvNS 0.000  0.000                                                                
variable    0.000  0.000  0.000                                                         
variable    0.000  0.000  0.000  0.000                                                  
variable    0.000  0.000  0.000  0.000  0.000                                           
scale(JF)   0.000  0.000  0.000  0.000  0.000  0.000                                    
vrbSVS:(JF) 0.000  0.000  0.000  0.000  0.000  0.000  0.000                             
vrNSNS:(JF) 0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000                      
vrbl:sc(JF) 0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000               
vrbl:sc(JF) 0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000        
vrbl:sc(JF) 0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000 
recall_lmer_longform$weight<-rep(8,414) ###create weights in denominator
recall_lmer_longform$prop<-recall_lmer_longform$value/recall_lmer_longform$weight #create proportion correct
m.old.g<-glmer(prop~variable*scale(JF)+(1|subID),weights=weight,family=binomial,data=recall_lmer_longform)#### from .007 to .03
summary(m.old.g)
Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
 Family: binomial  ( logit )
Formula: prop ~ variable * scale(JF) + (1 | subID)
   Data: recall_lmer_longform
Weights: weight

     AIC      BIC   logLik deviance df.resid 
  1376.4   1428.8   -675.2   1350.4      401 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-2.0570 -0.6575 -0.0103  0.5978  2.5613 

Random effects:
 Groups Name        Variance Std.Dev.
 subID  (Intercept) 0.103    0.3209  
Number of obs: 414, groups:  subID, 69

Fixed effects:
                                  Estimate Std. Error z value Pr(>|z|)    
(Intercept)                      -0.890534   0.055524 -16.039  < 2e-16 ***
variablenegSocVSall               0.609999   0.081851   7.453 9.16e-14 ***
variablenegNSvsotherNS            0.431787   0.076194   5.667 1.45e-08 ***
variable                         -0.250792   0.102618  -2.444   0.0145 *  
variable                          0.478652   0.100123   4.781 1.75e-06 ***
variable                          0.046569   0.097109   0.480   0.6315    
scale(JF)                        -0.090647   0.055407  -1.636   0.1018    
variablenegSocVSall:scale(JF)    -0.179936   0.081908  -2.197   0.0280 *  
variablenegNSvsotherNS:scale(JF) -0.052769   0.075943  -0.695   0.4871    
variable:scale(JF)                0.151332   0.104248   1.452   0.1466    
variable:scale(JF)               -0.059043   0.099958  -0.591   0.5547    
variable:scale(JF)                0.002757   0.097010   0.028   0.9773    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Correlation of Fixed Effects:
            (Intr) vrbSVS vrNSNS varibl varibl varibl sc(JF) vSVS:( vNSNS: v:(JF) v:(JF)
vrblngScVSl -0.065                                                                      
vrblngNSvNS -0.066  0.044                                                               
variable     0.026 -0.017  0.061                                                        
variable    -0.071  0.048  0.086  0.052                                                 
variable    -0.019  0.013  0.065  0.004  0.068                                          
scale(JF)    0.010  0.002 -0.002 -0.020  0.002  0.002                                   
vrbSVS:(JF)  0.004  0.025  0.000  0.014 -0.002 -0.001 -0.063                            
vrNSNS:(JF) -0.001  0.000  0.032  0.001 -0.001  0.001 -0.064  0.044                     
vrbl:sc(JF) -0.021  0.014  0.001 -0.031  0.005  0.008  0.036 -0.025  0.062              
vrbl:sc(JF)  0.003 -0.002 -0.001  0.005  0.030 -0.001 -0.072  0.049  0.088  0.050       
vrbl:sc(JF)  0.002 -0.001  0.001  0.008 -0.001  0.027 -0.021  0.014  0.067 -0.001  0.071
LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQoNCg0KYGBge3J9DQpyZWNhbGxfbG1lcl9sb25nZm9ybSA8LSByZWFkX2RlbGltKCJDOi9Vc2Vycy9kYXNpbC9Ecm9wYm94L1NDbmVnaW1hZ2VzL0FuYWx5c2lzX2ZpbGVzdXBkYXRlZC9yZWNhbGxfbG1lcl9sb25nZm9ybS50eHQiLCAiXHQiLCBlc2NhcGVfZG91YmxlID0gRkFMU0UsIHRyaW1fd3MgPSBUUlVFKQ0KDQoNCnJlY2FsbF9sbWVyX2xvbmdmb3JtIDwtIHdpdGhpbihyZWNhbGxfbG1lcl9sb25nZm9ybSwgew0KICBTdWJJRCA8LSBmYWN0b3Ioc3ViSUQpDQogIHZhcmlhYmxlIDwtIGFzLmZhY3Rvcih2YXJpYWJsZSkgDQogIHNvY2lhbGl0eSA8LSBhcy5mYWN0b3Ioc29jaWFsaXR5KSANCiAgdmFsZW5jZSA8LSBhcy5mYWN0b3IodmFsZW5jZSkgDQoNCiAgfSkNCg0KDQpuZWdTb2NWU2FsbDwtYygtLjIsMSwtLjIsLS4yLC0uMiwtLjIpDQojY29udHJhc3RzKGpmX25lZ19pdGVtcyR2YXJpYWJsZSkgPC0gY2JpbmQobmVnU29jVlNhbGwpDQoNCm5lZ05TdnNvdGhlck5TPC1jKDEsMCwtLjUsMCwtLjUsMCkNCiNjb250cmFzdHMoamZfbmVnX2l0ZW1zJHZhcmlhYmxlKSA8LSBjYmluZChuZWdOU3Zzb3RoZXJOUykNCmNvbnRyYXN0cyhyZWNhbGxfbG1lcl9sb25nZm9ybSR2YXJpYWJsZSk8LWNiaW5kKG5lZ1NvY1ZTYWxsLG5lZ05TdnNvdGhlck5TICkNCg0KYGBgDQoNCmNvbXBhcmUgdGhlIG1vZGVscyBhbmQgbm90ZSBkaWZmZXJlbmNlcyBiZXR3ZWVuIGdhdXNzaWFuIGFuZCBiaW5vbWlhbCBtb2RlbHM6DQpgYGB7cn0NCg0KDQptLm9sZDwtbG1lcih2YWx1ZX52YXJpYWJsZSpzY2FsZShKRikrKDF8c3ViSUQpLGRhdGE9cmVjYWxsX2xtZXJfbG9uZ2Zvcm0pICMjI29yaWduYWwgbW9kZWwNCnN1bW1hcnkobS5vbGQpDQoNCg0KcmVjYWxsX2xtZXJfbG9uZ2Zvcm0kd2VpZ2h0PC1yZXAoOCw0MTQpICMjI2NyZWF0ZSB3ZWlnaHRzIGluIGRlbm9taW5hdG9yDQpyZWNhbGxfbG1lcl9sb25nZm9ybSRwcm9wPC1yZWNhbGxfbG1lcl9sb25nZm9ybSR2YWx1ZS9yZWNhbGxfbG1lcl9sb25nZm9ybSR3ZWlnaHQgI2NyZWF0ZSBwcm9wb3J0aW9uIGNvcnJlY3QNCg0KbS5vbGQuZzwtZ2xtZXIocHJvcH52YXJpYWJsZSpzY2FsZShKRikrKDF8c3ViSUQpLHdlaWdodHM9d2VpZ2h0LGZhbWlseT1iaW5vbWlhbCxkYXRhPXJlY2FsbF9sbWVyX2xvbmdmb3JtKSMjIyMgZnJvbSAuMDA3IHRvIC4wMw0Kc3VtbWFyeShtLm9sZC5nKQ0KDQpgYGANCg0K