set.seed(123)
population <- rnorm(100)
hist(population)
boxplot(population)
set.seed(123)
populations2 <- rpois(100, lambda = 1)
hist(populations2)
boxplot(populations2)
## Mann Whitney U Test
placebo <- c(7,5,6,4,12)
new_drug <- c(3,6,4,2,1 )
wilcox.test(placebo, new_drug, alternative = 'greater')
## Warning in wilcox.test.default(placebo, new_drug, alternative = "greater"):
## cannot compute exact p-value with ties
##
## Wilcoxon rank sum test with continuity correction
##
## data: placebo and new_drug
## W = 22, p-value = 0.02928
## alternative hypothesis: true location shift is greater than 0
binom.test(0, 8, alternative = 'less')
##
## Exact binomial test
##
## data: 0 and 8
## number of successes = 0, number of trials = 8, p-value = 0.003906
## alternative hypothesis: true probability of success is less than 0.5
## 95 percent confidence interval:
## 0.000000 0.312344
## sample estimates:
## probability of success
## 0
# 0.003906 << 0.05
# Reject H0
# The treatment is effective
binom.test(4, 8, alternative = 'less')
##
## Exact binomial test
##
## data: 4 and 8
## number of successes = 4, number of trials = 8, p-value = 0.6367
## alternative hypothesis: true probability of success is less than 0.5
## 95 percent confidence interval:
## 0.0000000 0.8070971
## sample estimates:
## probability of success
## 0.5
# 0.6367 > 0.05
# Reject H1
# The treatment is not effective
binom.test(2, 8, alternative = 'less')
##
## Exact binomial test
##
## data: 2 and 8
## number of successes = 2, number of trials = 8, p-value = 0.1445
## alternative hypothesis: true probability of success is less than 0.5
## 95 percent confidence interval:
## 0.0000000 0.5996894
## sample estimates:
## probability of success
## 0.25
# 0.1445 > 0.05
# Reject H1
# The treatment is not effective
before <- c(85,70,40,65,80,75,55,20)
after <- c(75,50,50,40,20,65,40,25)
wilcox.test(before, after,paired=TRUE)
## Warning in wilcox.test.default(before, after, paired = TRUE): cannot
## compute exact p-value with ties
##
## Wilcoxon signed rank test with continuity correction
##
## data: before and after
## V = 32, p-value = 0.05747
## alternative hypothesis: true location shift is not equal to 0
# p= 0.05747 > 0.05
# reject H1
# treatment is not effective
albumin <- c(3.1, 2.6, 2.9,3.8, 4.1, 2.9, 3.4,4.2,4,5.5, 5, 4.8)
group <- c(1 ,1 ,1 ,2 ,2 ,2 ,2 ,2 ,3 ,3 ,3 ,3)
boxplot(albumin~ group)
kruskal.test(albumin~ group)
##
## Kruskal-Wallis rank sum test
##
## data: albumin by group
## Kruskal-Wallis chi-squared = 7.5495, df = 2, p-value = 0.02294
## 0.02294 < 0.5
## Reject H0
##
wt1 <- c(8,9,6,7,3)
wt2 <- c(2,4,3,5,1)
wt3 <- c(3,5,4,2,3)
wt4 <- c(2,2,-1,0,3)
weights <- c(wt1, wt2, wt3, wt4)
weights
## [1] 8 9 6 7 3 2 4 3 5 1 3 5 4 2 3 2 2 -1 0 3
group <- c(rep(1,5),rep(2,5),rep(3,5),rep(4,5))
group
## [1] 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4
boxplot(weights ~ group)
abline(h = mean(wt1), col='red' )
abline(h = mean(wt2), col='blue' )
abline(h = mean(wt3), col='orange' )
abline(h = mean(wt4), col='green' )
oneway.test(weights ~ group , var.equal = TRUE)
##
## One-way analysis of means
##
## data: weights and group
## F = 8.5593, num df = 3, denom df = 16, p-value = 0.001278
a <- aov(weights ~ group)
summary(a)
## Df Sum Sq Mean Sq F value Pr(>F)
## group 1 62.41 62.41 18.56 0.000424 ***
## Residuals 18 60.54 3.36
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
?aov
## starting httpd help server ... done
?oneway.test
MaleA <- c(22,25,26,27,24)
FemaleA <- c(21,19,18,24,25)
MaleB <- c(14, 17, 19, 20, 17)
FemaleB <- c(21, 20 , 23, 27, 25)
MaleC <- c(15, 16, 19, 14, 12)
FemaleC <- c(37, 34, 36, 26, 29)
timespan <- c(MaleA, FemaleA, MaleB, FemaleB, MaleC, FemaleC)
sex <- c(rep('Male', 5),rep('Female', 5),rep('Male', 5),
rep('Female', 5),rep('Male', 5),rep('Female', 5))
treatment <- c(rep('A',10),rep('B',10),rep('C',10))
par(mfrow=c(1,2))
boxplot(timespan ~ sex)
boxplot(timespan ~ treatment)
anova_res <- aov(timespan~factor(sex)*factor(treatment))
summary(anova_res)
## Df Sum Sq Mean Sq F value Pr(>F)
## factor(sex) 1 320.1 320.1 34.609 4.55e-06 ***
## factor(treatment) 2 68.6 34.3 3.708 0.0395 *
## factor(sex):factor(treatment) 2 532.5 266.2 28.782 4.21e-07 ***
## Residuals 24 222.0 9.3
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1