Agni-V test. News photo

Agni-V test. News photo

About Agni-V

According to BBC “India has successfully launched a long-range intercontinental ballistic missile able to carry a nuclear warhead, officials say. The Agni-V was launched from a site off India’s east coast and took about 20 minutes to hit its target somewhere near Indonesia in the Indian Ocean. The missile has a range of more than 5,000km (3,100 miles), potentially bringing targets in China within range.”

Research goal

We don’t believe any speculations about this ICBM. We just try estimate Agni-V operational range, applying linear regression with Bayesian model on SLBM data.

SLBM data

We use aggregated and transformed SLBM data to explore the relationship between M - Mass (kg), R - Range (km), P - Payload (kg), S - Stage (1,2,3), D - Diameter (m), L - Length (m) and W - Type of Warhead (Single - 1, MIRV - 2) of submarine launched ballistic missile.

load("slbm.dat")
library(DT)
datatable(slbm)

Bayesian linear regression

Model and tests

fit.slbm.bs.4<-stan_glm(sqrt(R)~S+D+L+W+log(M)+log(P),data=slbm,chains=4,iter=10000,seed=12345)
fit.slbm.bs.4
## stan_glm
##  family:       gaussian [identity]
##  formula:      sqrt(R) ~ S + D + L + W + log(M) + log(P)
##  observations: 26
##  predictors:   7
## ------
##             Median MAD_SD
## (Intercept) -40.6  106.7 
## S             9.4    5.1 
## D            37.4   19.8 
## L             0.9    1.7 
## W             3.3    5.6 
## log(M)        6.5   15.0 
## log(P)       -7.3    6.0 
## sigma        10.2    1.7 
## 
## Sample avg. posterior predictive distribution of y:
##          Median MAD_SD
## mean_PPD 69.0    2.8  
## 
## ------
## For info on the priors used see help('prior_summary.stanreg').
par(mfrow=c(1,1))
plot(fit.slbm.bs.4)

posterior_vs_prior(fit.slbm.bs.4)
## 
## Drawing from prior...

fit.slbm.bs42<-as.array(fit.slbm.bs.4)
mcmc_hist(fit.slbm.bs42)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

mcmc_trace(fit.slbm.bs42)

summary(fit.slbm.bs.4)
## 
## Model Info:
## 
##  function:     stan_glm
##  family:       gaussian [identity]
##  formula:      sqrt(R) ~ S + D + L + W + log(M) + log(P)
##  algorithm:    sampling
##  priors:       see help('prior_summary')
##  sample:       20000 (posterior sample size)
##  observations: 26
##  predictors:   7
## 
## Estimates:
##                 mean   sd     2.5%   25%    50%    75%    97.5%
## (Intercept)    -40.0  109.1 -254.9 -112.3  -40.6   31.7  175.7 
## S                9.4    5.4   -1.2    5.9    9.4   12.9   20.2 
## D               37.4   20.3   -2.6   24.1   37.4   50.9   77.4 
## L                0.9    1.8   -2.7   -0.3    0.9    2.0    4.4 
## W                3.2    5.8   -8.5   -0.5    3.3    7.1   14.8 
## log(M)           6.4   15.6  -24.3   -3.6    6.5   16.6   37.0 
## log(P)          -7.3    6.2  -19.5  -11.3   -7.3   -3.3    5.0 
## sigma           10.4    1.8    7.6    9.2   10.2   11.4   14.6 
## mean_PPD        69.0    2.9   63.2   67.1   69.0   70.9   74.7 
## log-posterior -110.5    2.4 -116.3 -111.8 -110.1 -108.8 -107.1 
## 
## Diagnostics:
##               mcse Rhat n_eff
## (Intercept)   1.2  1.0   8809
## S             0.0  1.0  12972
## D             0.2  1.0   9063
## L             0.0  1.0  12118
## W             0.1  1.0  11991
## log(M)        0.2  1.0   8316
## log(P)        0.1  1.0  13099
## sigma         0.0  1.0  10055
## mean_PPD      0.0  1.0  19069
## log-posterior 0.0  1.0   6234
## 
## For each parameter, mcse is Monte Carlo standard error, n_eff is a crude measure of effective sample size, and Rhat is the potential scale reduction factor on split chains (at convergence Rhat=1).

Predicting Range by posterior distribution

Here we use Agni-V open source data from Wiki - https://en.m.wikipedia.org/wiki/Agni-V.

Agni-V data

Agni-V data

slbm.pp4 <- posterior_predict(fit.slbm.bs.4,
            newdata = data.frame(L=17.5,D=2,S=3,W=2,M=50000,P=1500),
            seed = 12345)
quantile(slbm.pp4^2,probs = c(0.1,0.5,0.9))
##       10%       50%       90% 
##  7071.534 10162.157 13828.099
hist(slbm.pp4^2,breaks = 50,col="blue",
     main = "Posterior distribution for R~f(L=17.5,D=2,S=3,W=2,M=50000,P=1500)",
     xlab = "R,km")
RR <- median(slbm.pp4^2)
abline(v = RR,col="red")

Conclusions

1.Given historical SLBM data (M,P,D,L,S,W) and Bayesian linear regression model we can produce posterior distribution sample for Agni-V data with 80% credible interval \(P(7072\le Range\le13828)=0.8\) and the mean \(Range=10162\)

2.The Agni-V missile has operational Range compared to the existing ICBMs of to date.