Juan Pablo Edwards Molina


##   trat       rota bloco inc       pl   pmg  ndv   rend  pl10000
## 1    1 Msil-Fj-Sj     1  32 174747.5 173.6 58.4 1611.9 17.47475
## 2    1 Msil-Fj-Sj     2  34 185858.6 152.9 52.2 1677.0 18.58586
## 3    1 Msil-Fj-Sj     3  20 147474.7 158.4 52.0 1494.0 14.74747
## 4    1 Msil-Fj-Sj     4  44 147474.7 151.5 60.2 1596.4 14.74747
## 5    1 Msil-Fj-Sj     5  16 190909.1 145.5 35.4 1594.2 19.09091
## 6    2   Mg-Nb-Sj     1  48 237373.7 150.3 36.2 1464.2 23.73737

Exploração geral dos dados

## $stats
##      [,1] [,2] [,3] [,4]
## [1,]   15   36   16   28
## [2,]   18   36   20   34
## [3,]   22   38   32   38
## [4,]   30   38   34   50
## [5,]   34   38   44   56
## attr(,"class")
##  Mg-Av-Sj 
## "integer" 
## 
## $n
## [1] 5 5 5 5
## 
## $conf
##          [,1]     [,2]     [,3]     [,4]
## [1,] 13.52083 36.58681 22.10764 26.69444
## [2,] 30.47917 39.41319 41.89236 49.30556
## 
## $out
## [1] 48 28
## 
## $group
## [1] 2 2
## 
## $names
## [1] "Mg-Av-Sj"   "Mg-Nb-Sj"   "Msil-Fj-Sj" "Ms-Mg-Sj"  
## 
## $stats
##          [,1]     [,2]     [,3]     [,4]
## [1,] 19.39394 23.73737 14.74747 19.79798
## [2,] 20.20202 23.73737 14.74747 20.40404
## [3,] 23.43434 25.25253 17.47475 20.60606
## [4,] 24.64646 26.56566 18.58586 22.32323
## [5,] 31.01010 28.08081 19.09091 24.14141
## 
## $n
## [1] 5 5 5 5
## 
## $conf
##          [,1]     [,2]     [,3]     [,4]
## [1,] 20.29391 23.25407 14.76255 19.24997
## [2,] 26.57477 27.25099 20.18695 21.96215
## 
## $out
## numeric(0)
## 
## $group
## numeric(0)
## 
## $names
## [1] "Mg-Av-Sj"   "Mg-Nb-Sj"   "Msil-Fj-Sj" "Ms-Mg-Sj"  
## 
## $stats
##       [,1]  [,2]  [,3]  [,4]
## [1,] 160.8 147.6 145.5 134.0
## [2,] 171.4 148.9 151.5 139.6
## [3,] 173.4 150.3 152.9 146.1
## [4,] 180.0 151.4 158.4 146.6
## [5,] 183.0 151.4 158.4 149.7
## 
## $n
## [1] 5 5 5 5
## 
## $conf
##          [,1]     [,2]     [,3]     [,4]
## [1,] 167.3233 148.5335 148.0245 141.1538
## [2,] 179.4767 152.0665 157.7755 151.0462
## 
## $out
## [1] 155.6 173.6
## 
## $group
## [1] 2 3
## 
## $names
## [1] "Mg-Av-Sj"   "Mg-Nb-Sj"   "Msil-Fj-Sj" "Ms-Mg-Sj"  
## 
## $stats
##      [,1] [,2] [,3] [,4]
## [1,] 38.8 31.6 52.0 32.2
## [2,] 43.8 36.2 52.0 36.4
## [3,] 46.6 41.6 52.2 45.8
## [4,] 49.6 51.4 58.4 55.4
## [5,] 49.8 56.0 60.2 55.8
## 
## $n
## [1] 5 5 5 5
## 
## $conf
##          [,1]     [,2]     [,3]     [,4]
## [1,] 42.50173 30.85972 47.67778 32.37465
## [2,] 50.69827 52.34028 56.72222 59.22535
## 
## $out
## [1] 35.4
## 
## $group
## [1] 3
## 
## $names
## [1] "Mg-Av-Sj"   "Mg-Nb-Sj"   "Msil-Fj-Sj" "Ms-Mg-Sj"  
## 
## $stats
##        [,1]   [,2]   [,3]   [,4]
## [1,] 2219.7 1445.9 1594.2 1505.8
## [2,] 2219.7 1464.2 1594.2 1513.1
## [3,] 2223.6 1538.8 1596.4 1513.1
## [4,] 2255.8 1671.9 1611.9 1559.8
## [5,] 2255.8 1755.9 1611.9 1617.5
## 
## $n
## [1] 5 5 5 5
## 
## $conf
##          [,1]    [,2]     [,3]     [,4]
## [1,] 2198.092 1392.04 1583.893 1480.102
## [2,] 2249.108 1685.56 1608.907 1546.098
## 
## $out
## [1] 2445.9 1982.1 1677.0 1494.0
## 
## $group
## [1] 1 1 3 3
## 
## $names
## [1] "Mg-Av-Sj"   "Mg-Nb-Sj"   "Msil-Fj-Sj" "Ms-Mg-Sj"

Análise individualizado por Variavel:

1- Incidência de podridão carvão (Macrophomina phaseolina)

## Analysis of Variance Table
## 
## Response: inc
##           Df  Sum Sq Mean Sq F value  Pr(>F)  
## trat       3  937.35 312.450  3.2965 0.05785 .
## bloco      4  364.20  91.050  0.9606 0.46371  
## Residuals 12 1137.40  94.783                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## $statistics
##    Mean       CV  MSerror      HSD
##   32.95 29.54681 94.78333 18.28065
## 
## $parameters
##   Df ntr StudentizedRange
##   12   4          4.19866
## 
## $means
##    inc       std r Min Max
## 1 29.2 11.278298 5  16  44
## 2 37.6  7.127412 5  28  48
## 3 41.2 11.541230 5  28  56
## 4 23.8  8.012490 5  15  34
## 
## $comparison
## NULL
## 
## $groups
##   trt means M
## 1   3  41.2 a
## 2   2  37.6 a
## 3   1  29.2 a
## 4   4  23.8 a

## $statistics
##    Mean       CV  MSerror      HSD
##   32.95 29.54681 94.78333 15.76429
## 
## $parameters
##   Df ntr StudentizedRange
##   12   4         3.620708
## 
## $means
##    inc       std r Min Max
## 1 29.2 11.278298 5  16  44
## 2 37.6  7.127412 5  28  48
## 3 41.2 11.541230 5  28  56
## 4 23.8  8.012490 5  15  34
## 
## $comparison
## NULL
## 
## $groups
##   trt means  M
## 1   3  41.2  a
## 2   2  37.6 ab
## 3   1  29.2 ab
## 4   4  23.8  b
## $statistic
##       W 
## 0.93516
## 
##  Bartlett test of homogeneity of variances
## 
## data:  inc by trat
## Bartlett's K-squared = 1.2291, df = 3, p-value = 0.746

2- Numero de plantas

## Analysis of Variance Table
## 
## Response: pl
##           Df     Sum Sq    Mean Sq F value   Pr(>F)   
## trat       3 2.0531e+10 6843520685  7.6728 0.003989 **
## bloco      4 2.1990e+09  549740511  0.6164 0.659192   
## Residuals 12 1.0703e+10  891915930                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## $statistics
##       Mean      CV   MSerror      HSD
##   218989.9 13.6376 891915930 56077.38
## 
## $parameters
##   Df ntr StudentizedRange
##   12   4          4.19866
## 
## $means
##         pl      std r      Min      Max
## 1 169292.9 20757.55 5 147474.7 190909.1
## 2 254747.5 18753.66 5 237373.7 280808.1
## 3 214545.4 17707.03 5 197979.8 241414.1
## 4 237373.7 46145.14 5 193939.4 310101.0
## 
## $comparison
## NULL
## 
## $groups
##   trt    means  M
## 1   2 254747.5  a
## 2   4 237373.7  a
## 3   3 214545.4 ab
## 4   1 169292.9  b
## $statistic
##         W 
## 0.9624905
## 
##  Bartlett test of homogeneity of variances
## 
## data:  pl by trat
## Bartlett's K-squared = 5.1807, df = 3, p-value = 0.159

3- Peso mil graos

## Analysis of Variance Table
## 
## Response: pmg
##           Df  Sum Sq Mean Sq F value    Pr(>F)    
## trat       3 2527.20  842.40 16.5037 0.0001475 ***
## bloco      4  337.67   84.42  1.6539 0.2247499    
## Residuals 12  612.51   51.04                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## $statistics
##      Mean       CV  MSerror      HSD
##   156.015 4.579324 51.04292 13.41509
## 
## $parameters
##   Df ntr StudentizedRange
##   12   4          4.19866
## 
## $means
##      pmg       std r   Min   Max
## 1 156.38 10.664286 5 145.5 173.6
## 2 150.76  3.061536 5 147.6 155.6
## 3 143.20  6.320997 5 134.0 149.7
## 4 173.72  8.630875 5 160.8 183.0
## 
## $comparison
## NULL
## 
## $groups
##   trt  means M
## 1   4 173.72 a
## 2   1 156.38 b
## 3   2 150.76 b
## 4   3 143.20 b
## 
##  Shapiro-Wilk normality test
## 
## data:  residuals(m_pmg)
## W = 0.9541, p-value = 0.4333
## 
##  Bartlett test of homogeneity of variances
## 
## data:  pmg by trat
## Bartlett's K-squared = 4.9493, df = 3, p-value = 0.1755

4- Numero de vagens

## Analysis of Variance Table
## 
## Response: ndv
##           Df Sum Sq Mean Sq F value Pr(>F)
## trat       3 193.93  64.643  0.9528 0.4462
## bloco      4 533.31 133.327  1.9652 0.1642
## Residuals 12 814.13  67.844

## $statistics
##    Mean       CV  MSerror      HSD
##   46.46 17.72873 67.84433 15.46616
## 
## $parameters
##   Df ntr StudentizedRange
##   12   4          4.19866
## 
## $means
##     ndv       std r  Min  Max
## 1 51.64  9.787134 5 35.4 60.2
## 2 43.36 10.211170 5 31.6 56.0
## 3 45.12 10.760669 5 32.2 55.8
## 4 45.72  4.583885 5 38.8 49.8
## 
## $comparison
## NULL
## 
## $groups
##   trt means M
## 1   1 51.64 a
## 2   4 45.72 a
## 3   3 45.12 a
## 4   2 43.36 a
## 
##  Shapiro-Wilk normality test
## 
## data:  residuals(m_ndv)
## W = 0.9742, p-value = 0.8393
## 
##  Bartlett test of homogeneity of variances
## 
## data:  ndv by trat
## Bartlett's K-squared = 2.6355, df = 3, p-value = 0.4513

5- Rendimento

## Analysis of Variance Table
## 
## Response: rend
##           Df  Sum Sq Mean Sq F value   Pr(>F)    
## trat       3 1614942  538314 33.7144 3.98e-06 ***
## bloco      4   15750    3938  0.2466   0.9062    
## Residuals 12  191603   15967                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## $statistics
##      Mean       CV  MSerror      HSD
##   1734.33 7.285824 15966.91 237.2663
## 
## $parameters
##   Df ntr StudentizedRange
##   12   4          4.19866
## 
## $means
##      rend      std r    Min    Max
## 1 1594.70  65.5987 5 1494.0 1677.0
## 2 1575.34 134.5063 5 1445.9 1755.9
## 3 1541.86  47.4285 5 1505.8 1617.5
## 4 2225.42 164.9053 5 1982.1 2445.9
## 
## $comparison
## NULL
## 
## $groups
##   trt   means M
## 1   4 2225.42 a
## 2   1 1594.70 b
## 3   2 1575.34 b
## 4   3 1541.86 b
## 
##  Shapiro-Wilk normality test
## 
## data:  residuals(m_rend)
## W = 0.9521, p-value = 0.4006
## 
##  Bartlett test of homogeneity of variances
## 
## data:  rend by trat
## Bartlett's K-squared = 6.4441, df = 3, p-value = 0.09189

Multivariada

variables = dat[,4:8]
Yp<-as.matrix(variables)
row.names(Yp)=dat$rota
grupo = dat$rota

cor(variables)
##              inc          pl        pmg         ndv        rend
## inc   1.00000000  0.05848082 -0.4029486  0.05738316 -0.46971926
## pl    0.05848082  1.00000000  0.1786000 -0.42727656  0.28624964
## pmg  -0.40294862  0.17860002  1.0000000  0.11360893  0.80338730
## ndv   0.05738316 -0.42727656  0.1136089  1.00000000 -0.08121713
## rend -0.46971926  0.28624964  0.8033873 -0.08121713  1.00000000
PCA.COR=princomp(~inc + pl + pmg + ndv + rend, cor=TRUE)
summary(PCA.COR)
## Importance of components:
##                           Comp.1    Comp.2    Comp.3    Comp.4    Comp.5
## Standard deviation     1.4855156 1.1871502 0.8988753 0.6364974 0.4132941
## Proportion of Variance 0.4413513 0.2818651 0.1615954 0.0810258 0.0341624
## Cumulative Proportion  0.4413513 0.7232164 0.8848118 0.9658376 1.0000000
res.pca = PCA(variables, scale.unit = TRUE, ncp = 4,graph = TRUE)

mandat=manova(Yp~grupo); (test_Wilks<-summary(mandat,test="Wilks"))
##           Df    Wilks approx F num Df den Df    Pr(>F)    
## grupo      3 0.022388   6.6163     15 33.528 2.876e-06 ***
## Residuals 16                                              
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#Si Pr<0.05, há diferencas entre as medias