INSTALLING REQUIRED PACKAGES
library(readr)
library(plyr)
library(dplyr)
library(tidyr)
library(car)
library(mosaic)
library(outliers)
library(forecast)
library(e1071)
DATA
We are using the data from a opean source website “https://data.gov.in/”
https://data.gov.in/resources/location-wise-daily-ambient-air-quality-gujarat-year-2015 which is for RSPM_Gujarat
https://data.gov.in/resources/location-wise-daily-ambient-air-quality-delhi-year-2015 which is forRSPM_Delhi
The Rpub link on which the assignment submitted is http://rpubs.com/Tarun_S_Sarode/393976
The data include the following :
>Stn Code : Station Code
>Sampling Date : The date on which the sampling is done.
>State : The state’s in which the the survey is done.
>City/Town/Village/Area : Division of the state through region.
>Location of Monitoring Station : The location where the survey was done.
>Agency : The agency who did the survey.
>Type of Location : Location divided as Resendential or Rural.
>SO2 : Sulphur Dioxide.
>NO2 : Nitrogen Dioxide.
>RSPM/PM10 : Particular Matter (Size less than 10).
>PM 2.5 : Particular Matter (Size less than 2.5).
Importing Data
RSPM_Delhi <- read.csv("RSPM Delhi.csv")
RSPM_Delhi$NO2_limit<-c(80)
head(RSPM_Delhi)
## Stn.Code Sampling.Date State City.Town.Village.Area
## 1 55 5/01/2015 Delhi Delhi
## 2 55 8/01/2015 Delhi Delhi
## 3 55 13/01/2015 Delhi Delhi
## 4 55 16/01/2015 Delhi Delhi
## 5 55 21/01/2015 Delhi Delhi
## 6 55 27/01/2015 Delhi Delhi
## Location.of.Monitoring.Station Agency
## 1 Nizamuddin, Delhi Central Pollution Control Board
## 2 Nizamuddin, Delhi Central Pollution Control Board
## 3 Nizamuddin, Delhi Central Pollution Control Board
## 4 Nizamuddin, Delhi Central Pollution Control Board
## 5 Nizamuddin, Delhi Central Pollution Control Board
## 6 Nizamuddin, Delhi Central Pollution Control Board
## Type.of.Location SO2 NO2 RSPM.PM10 PM.2.5 NO2_limit
## 1 Residential, Rural and other Areas 4 44 203 NA 80
## 2 Residential, Rural and other Areas 4 45 214 NA 80
## 3 Residential, Rural and other Areas 4 47 182 NA 80
## 4 Residential, Rural and other Areas 4 43 204 78 80
## 5 Residential, Rural and other Areas 4 39 192 83 80
## 6 Residential, Rural and other Areas 4 46 159 146 80
In the above code we are importing the data and creating a new column NO2_limit = 80 which is the limit for the gas NO2 to be present in the air in Delhi and is used further for calculations
RSPM_Gujrat <- read.csv("RSPM Gujrat.csv")
RSPM_Gujrat$NO2_limit<-c(30)
head(RSPM_Gujrat)
## Stn.Code Sampling.Date State City.Town.Village.Area
## 1 21 5/01/2015 Gujarat Surat
## 2 21 8/01/2015 Gujarat Surat
## 3 21 12/01/2015 Gujarat Surat
## 4 21 15/01/2015 Gujarat Surat
## 5 21 19/01/2015 Gujarat Surat
## 6 21 22/01/2015 Gujarat Surat
## Location.of.Monitoring.Station Agency
## 1 S.V.R. Engg. College, Surat Gujarat State Pollution Control Board
## 2 S.V.R. Engg. College, Surat Gujarat State Pollution Control Board
## 3 S.V.R. Engg. College, Surat Gujarat State Pollution Control Board
## 4 S.V.R. Engg. College, Surat Gujarat State Pollution Control Board
## 5 S.V.R. Engg. College, Surat Gujarat State Pollution Control Board
## 6 S.V.R. Engg. College, Surat Gujarat State Pollution Control Board
## Type.of.Location SO2 NO2 RSPM.PM10 PM.2.5 NO2_limit
## 1 Residential, Rural and other Areas 13 20 86 28 30
## 2 Residential, Rural and other Areas 13 19 73 25 30
## 3 Residential, Rural and other Areas 14 22 88 32 30
## 4 Residential, Rural and other Areas 12 19 86 30 30
## 5 Residential, Rural and other Areas 13 21 78 27 30
## 6 Residential, Rural and other Areas 14 22 75 32 30
In the above code we are importing the data and creating a new column NO2_limit = 80 which is the limit for the gas NO2 to be present in the air in Gujarat and is used further for calculations
Merging Data
RSPM<-rBind(RSPM_Delhi,RSPM_Gujrat)
head(RSPM)
## Stn.Code Sampling.Date State City.Town.Village.Area
## 1 55 5/01/2015 Delhi Delhi
## 2 55 8/01/2015 Delhi Delhi
## 3 55 13/01/2015 Delhi Delhi
## 4 55 16/01/2015 Delhi Delhi
## 5 55 21/01/2015 Delhi Delhi
## 6 55 27/01/2015 Delhi Delhi
## Location.of.Monitoring.Station Agency
## 1 Nizamuddin, Delhi Central Pollution Control Board
## 2 Nizamuddin, Delhi Central Pollution Control Board
## 3 Nizamuddin, Delhi Central Pollution Control Board
## 4 Nizamuddin, Delhi Central Pollution Control Board
## 5 Nizamuddin, Delhi Central Pollution Control Board
## 6 Nizamuddin, Delhi Central Pollution Control Board
## Type.of.Location SO2 NO2 RSPM.PM10 PM.2.5 NO2_limit
## 1 Residential, Rural and other Areas 4 44 203 NA 80
## 2 Residential, Rural and other Areas 4 45 214 NA 80
## 3 Residential, Rural and other Areas 4 47 182 NA 80
## 4 Residential, Rural and other Areas 4 43 204 78 80
## 5 Residential, Rural and other Areas 4 39 192 83 80
## 6 Residential, Rural and other Areas 4 46 159 146 80
We merge the RSPM_Delhi and RSPM_Gujrat data
We have assigned a new variable “RSPM”to the merged data
Conversion of Data Type
str(RSPM)
## 'data.frame': 1825 obs. of 12 variables:
## $ Stn.Code : chr "55" "55" "55" "55" ...
## $ Sampling.Date : Factor w/ 297 levels "1/01/2015","1/04/2015",..: 208 232 32 59 110 161 94 209 9 33 ...
## $ State : Factor w/ 2 levels "Delhi","Gujarat": 1 1 1 1 1 1 1 1 1 1 ...
## $ City.Town.Village.Area : Factor w/ 15 levels "Delhi","Ahmedabad",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ Location.of.Monitoring.Station: Factor w/ 41 levels "Janakpuri, Delhi",..: 4 4 4 4 4 4 4 4 4 4 ...
## $ Agency : Factor w/ 3 levels "Central Pollution Control Board",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ Type.of.Location : Factor w/ 3 levels "Industrial Area",..: 2 2 2 2 2 2 2 2 2 2 ...
## $ SO2 : int 4 4 4 4 4 4 4 4 4 4 ...
## $ NO2 : int 44 45 47 43 39 46 41 50 48 45 ...
## $ RSPM.PM10 : int 203 214 182 204 192 159 267 235 241 280 ...
## $ PM.2.5 : int NA NA NA 78 83 146 62 112 62 NA ...
## $ NO2_limit : num 80 80 80 80 80 80 80 80 80 80 ...
We can see that the data includes characters, numbers and integers
We will change the character to Factor data type of City/Town/Village/Area, Location of Monitoring Station, Type of Location, Agency
RSPM$City.Town.Village.Area<- as.factor(RSPM$City.Town.Village.Area)
RSPM$Location.of.Monitoring.Station <- as.factor(RSPM$Location.of.Monitoring.Station)
RSPM$Type.of.Location <- as.factor(RSPM$Type.of.Location)
RSPM$Agency <- as.factor(RSPM$Agency)
str(RSPM)
## 'data.frame': 1825 obs. of 12 variables:
## $ Stn.Code : chr "55" "55" "55" "55" ...
## $ Sampling.Date : Factor w/ 297 levels "1/01/2015","1/04/2015",..: 208 232 32 59 110 161 94 209 9 33 ...
## $ State : Factor w/ 2 levels "Delhi","Gujarat": 1 1 1 1 1 1 1 1 1 1 ...
## $ City.Town.Village.Area : Factor w/ 15 levels "Delhi","Ahmedabad",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ Location.of.Monitoring.Station: Factor w/ 41 levels "Janakpuri, Delhi",..: 4 4 4 4 4 4 4 4 4 4 ...
## $ Agency : Factor w/ 3 levels "Central Pollution Control Board",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ Type.of.Location : Factor w/ 3 levels "Industrial Area",..: 2 2 2 2 2 2 2 2 2 2 ...
## $ SO2 : int 4 4 4 4 4 4 4 4 4 4 ...
## $ NO2 : int 44 45 47 43 39 46 41 50 48 45 ...
## $ RSPM.PM10 : int 203 214 182 204 192 159 267 235 241 280 ...
## $ PM.2.5 : int NA NA NA 78 83 146 62 112 62 NA ...
## $ NO2_limit : num 80 80 80 80 80 80 80 80 80 80 ...
Labeling of the Data
We have labeled the “Central Pollution Control Board”, “Gujarat State Pollution Control Board”, “National Environmental Engineering Research Institute” in the data set to “Central”, “State”, “National” in the “Agency” column
RSPM$Agency <- factor(RSPM$Agency, levels = c("Central Pollution Control Board", "Gujarat State Pollution Control Board", "National Environmental Engineering Research Institute"), labels = c("Central", "State", "National"))
head(RSPM$Agency)
## [1] Central Central Central Central Central Central
## Levels: Central State National
Tidy Data
By seeing the data we can say that the data taken has all the required conditions to conclude tat it is tidy
head(RSPM)
## Stn.Code Sampling.Date State City.Town.Village.Area
## 1 55 5/01/2015 Delhi Delhi
## 2 55 8/01/2015 Delhi Delhi
## 3 55 13/01/2015 Delhi Delhi
## 4 55 16/01/2015 Delhi Delhi
## 5 55 21/01/2015 Delhi Delhi
## 6 55 27/01/2015 Delhi Delhi
## Location.of.Monitoring.Station Agency
## 1 Nizamuddin, Delhi Central
## 2 Nizamuddin, Delhi Central
## 3 Nizamuddin, Delhi Central
## 4 Nizamuddin, Delhi Central
## 5 Nizamuddin, Delhi Central
## 6 Nizamuddin, Delhi Central
## Type.of.Location SO2 NO2 RSPM.PM10 PM.2.5 NO2_limit
## 1 Residential, Rural and other Areas 4 44 203 NA 80
## 2 Residential, Rural and other Areas 4 45 214 NA 80
## 3 Residential, Rural and other Areas 4 47 182 NA 80
## 4 Residential, Rural and other Areas 4 43 204 78 80
## 5 Residential, Rural and other Areas 4 39 192 83 80
## 6 Residential, Rural and other Areas 4 46 159 146 80
SCAN 1 NA Values
We are checking the missing values in the data for the columns “SO2”, “NO2”, “RSPM.PM10”, “PM 2.5” and assign them with the mean of the respected column
which(is.na(RSPM$SO2))
## [1] 78 84 126 127 128 129 130 137 146 156 232 349 364 1177
which(is.na(RSPM$SO2))
## [1] 78 84 126 127 128 129 130 137 146 156 232 349 364 1177
which(is.na(RSPM$RSPM.PM10))
## [1] 84 126 127 128 129 130 137 146 232 349 364 1177
which(is.na(RSPM$`PM.2.5`))
## [1] 1 2 3 10 72 73 74 75 76 77 78 121 150 151
## [15] 152 153 154 155 156 162 163 181 190 194 197 198 199 200
## [29] 201 202 203 204 205 206 207 208 209 210 211 212 213 214
## [43] 215 216 217 218 219 220 227 228 229 230 231 232 233 260
## [57] 262 265 268 305 306 307 308 309 310 311 312 317 324 335
## [71] 347 350 366 380 381 382 383 384 385 386 387 388 389 390
## [85] 391 392 393 394 395 396 397 398 399 400 401 402 403 404
## [99] 405 406 407 408 409 410 411 412 413 414 415 416 417 418
## [113] 419 420 421 422 423 424 425 426 427 428 429 430 431 432
## [127] 433 434 435 436 437 438 439 440 441 442 443 444 445 446
## [141] 447 448 449 450 451 452 453 454 455 456 457 458 459 460
## [155] 461 462 463 464 465 466 467 468 469 470 471 472 473 474
## [169] 475 476 477 478 479 480 481 482 483 484 485 486 487 488
## [183] 489 490 491 492 493 494 495 496 497 498 499 500 501 502
## [197] 503 504 505 506 507 508 509 510 511 512 513 514 515 516
## [211] 517 518 519 520 521 522 523 524 525 526 527 528 529 530
## [225] 531 532 533 534 535 536 537 538 539 540 541 542 543 544
## [239] 545 546 547 548 549 550 551 552 553 554 555 556 557 558
## [253] 559 560 561 562 563 564 565 566 567 568 569 570 571 572
## [267] 573 574 575 576 577 578 579 580 581 582 583 584 585 586
## [281] 587 588 589 590 591 592 593 594 595 596 597 598 599 600
## [295] 601 602 603 604 605 606 607 608 609 610 611 612 613 614
## [309] 615 616 617 618 619 620 621 622 623 624 625 626 627 628
## [323] 629 630 631 632 633 634 635 636 637 638 639 640 641 642
## [337] 643 644 645 646 647 648 649 650 651 652 653 654 655 656
## [351] 657 658 659 660 661 662 663 664 665 666 670 676 680 690
## [365] 724 737 738 739 740 741 742 743 744 1177
RSPM$SO2[is.na(RSPM$SO2)] <- mean(RSPM$SO2, na.rm = TRUE)
which(is.na(RSPM$SO2))
## integer(0)
RSPM$NO2[is.na(RSPM$NO2)] <- mean(RSPM$NO2, na.rm = TRUE)
which(is.na(RSPM$SO2))
## integer(0)
RSPM$RSPM.PM10[is.na(RSPM$RSPM.PM10)]<- mean(RSPM$RSPM.PM10, na.rm= TRUE)
which(is.na(RSPM$RSPM.PM10))
## integer(0)
RSPM$PM.2.5[is.na(RSPM$`PM.2.5`)] <- mean(RSPM$`PM.2.5`, na.rm = TRUE)
which(is.na(RSPM$`PM.2.5`))
## integer(0)
MUTATE
We are mutating a new column named “Difference” by minusing the surveyed level of NO2 in air with the limited number being 80 for Delhi and with the limited number being 30 for Gujarat
The difference column shows the level of increase or decrease in the level of the NO2 in the air of Delhi and Gujarat
RSPM<-mutate(RSPM, Difference = NO2_limit - NO2)
head(RSPM)
## Stn.Code Sampling.Date State City.Town.Village.Area
## 1 55 5/01/2015 Delhi Delhi
## 2 55 8/01/2015 Delhi Delhi
## 3 55 13/01/2015 Delhi Delhi
## 4 55 16/01/2015 Delhi Delhi
## 5 55 21/01/2015 Delhi Delhi
## 6 55 27/01/2015 Delhi Delhi
## Location.of.Monitoring.Station Agency
## 1 Nizamuddin, Delhi Central
## 2 Nizamuddin, Delhi Central
## 3 Nizamuddin, Delhi Central
## 4 Nizamuddin, Delhi Central
## 5 Nizamuddin, Delhi Central
## 6 Nizamuddin, Delhi Central
## Type.of.Location SO2 NO2 RSPM.PM10 PM.2.5 NO2_limit
## 1 Residential, Rural and other Areas 4 44 203 47.43143 80
## 2 Residential, Rural and other Areas 4 45 214 47.43143 80
## 3 Residential, Rural and other Areas 4 47 182 47.43143 80
## 4 Residential, Rural and other Areas 4 43 204 78.00000 80
## 5 Residential, Rural and other Areas 4 39 192 83.00000 80
## 6 Residential, Rural and other Areas 4 46 159 146.00000 80
## Difference
## 1 36
## 2 35
## 3 33
## 4 37
## 5 41
## 6 34
SCAN 2 OUTLIERS
We are using the Z-score (i.e.,normal score )method to detect the outliers in the data frame.A standardised score (z-score) of all observations are calculated using the following equation:
z.scores=RSPM$SO2 %>% scores(type = "z")
z.scores %>% summary()
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -1.4714 -1.1387 0.3584 0.0000 0.5248 5.8479
which(abs(z.scores)>3)
## [1] 465 556 557 562 563 600 651 655 657 1208
RSPM_SO2<- (-which(abs(z.scores)>3))
z.scores=RSPM_SO2 %>% scores(type = "z")
z.scores %>% summary()
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -2.72503 -0.03208 0.32033 0.00000 0.43335 0.88663
we can see that the min value was -1.4714 and max value was 5.8479
we use the which(abs(z.scores)>3) to see the location of outliers
which was minimised to the max value 0.88663 and min value -2.72503
z.scores=RSPM$NO2 %>% scores(type = "z")
z.scores %>% summary()
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -0.8683 -0.6172 -0.5544 0.0000 0.2931 5.7861
which(abs(z.scores)>3)
## [1] 406 467 468 472 476 477 478 479 487 488 494 497 499 504 505 506 507
## [18] 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 571 589
## [35] 651 652 654 655 656 659 660 661 662 665 666
RSPM_NO2<- (-which(abs(z.scores)>3))
z.scores=RSPM_NO2 %>% scores(type = "z")
z.scores %>% summary()
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -1.55799 -0.46275 -0.05026 0.00000 0.84585 2.14023
we can see that the min value was -0.8683 and max value was 5.7861
we use the which(abs(z.scores)>3) to see the location of outliers
which was minimised to the min value -1.55799 and max value 2.14023
z.scores=RSPM$`RSPM.PM10` %>% scores(type = "z")
z.scores %>% summary()
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -1.3164 -0.6167 -0.5090 0.0000 0.3953 8.0928
which(abs(z.scores)>3)
## [1] 74 145 154 158 188 226 228 305 306 308 381 504 556 564 603 606 608
## [18] 651 654 655 661 662 665 666 728 730 733 736 737 744
RSPM_RSPM10<- (-which(abs(z.scores)>3))
z.scores=RSPM_RSPM10 %>% scores(type = "z")
z.scores %>% summary()
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -1.0947 -0.7400 -0.4743 0.0000 0.8567 1.8852
we can see that the min value was -1.3164 and max value was 8.0928
we use the which(abs(z.scores)>3) to see the location of outliers
which was minimised to the min value -1.0947 and max value 1.8852
z.scores=RSPM$`PM.2.5` %>% scores(type = "z")
z.scores %>% summary()
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -1.1656 -0.5287 -0.3467 0.0000 0.0000 8.2059
which(abs(z.scores)>3)
## [1] 63 64 67 70 80 81 86 88 89 91 141 143 144 146 147 148 149
## [18] 157 158 159 165 166 221 222 223 226 287 296 298 300 315 316 378 673
## [35] 674 677 698 718 720 723 725 728 730 732 733 734 735
RSPM_PM2.5<- (-which(abs(z.scores)>3))
z.scores=RSPM_PM2.5 %>% scores(type = "z")
z.scores %>% summary()
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -1.5346 -1.3071 0.4272 0.0000 0.7274 1.0352
we can see that the min value was -1.1656 and max value was 8.2059
we use the which(abs(z.scores)>3) to see the location of outliers
which was minimised to the min value -1.5346 and max value 1.0352
z.scores=RSPM$Difference %>% scores(type = "z")
z.scores %>% summary()
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -6.86758 -0.12079 -0.03202 0.00000 0.45624 2.27610
which(abs(z.scores)>3)
## [1] 406 467 468 472 476 477 478 479 487 488 494 497 504 505 506 507 555
## [18] 556 557 558 559 560 561 562 563 564 565 566 568 569 571 589 651 652
## [35] 654 655 656 659 661 662 665 666
RSPM_Difference<- (-which(abs(z.scores)>3))
z.scores=RSPM_Difference %>% scores(type = "z")
z.scores %>% summary()
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -1.57476 -0.41728 -0.06222 0.00000 0.85738 2.11783
we can see that the min value was -6.86758 and max value was 2.27610
we use the which(abs(z.scores)>3) to see the location of outliers
which was minimised to the min value -1.57476 and max value 2.11783
Data Transformation
we are using the PM 2.5 column to decrease the skewness
histogram(RSPM$`PM.2.5`)
The above histogram shows that it is skewed towards right
skewness(RSPM$`PM.2.5`)
## [1] 3.092601
The skewness of the column PM.2.5 is 3.092601
We use the BoxCox function to decrease the skewness of the column PM 2.5
BoxCox_PM2.5<-BoxCox(RSPM$`PM.2.5`,lambda="auto")
BoxCox_PM2.5
## [1] 1.591312 1.591312 1.591312 1.642467 1.647922 1.689761 1.620602
## [8] 1.671744 1.620602 1.591312 1.622218 1.668364 1.611871 1.582289
## [15] 1.590234 1.638926 1.590234 1.642467 1.646873 1.642467 1.633847
## [22] 1.613711 1.641311 1.603981 1.524751 1.653829 1.655663 1.660807
## [29] 1.618945 1.663969 1.641311 1.641311 1.680077 1.640131 1.608037
## [36] 1.576507 1.671744 1.663197 1.646873 1.656556 1.649963 1.647922
## [43] 1.576507 1.620602 1.650956 1.626835 1.601862 1.556249 1.582289
## [50] 1.539560 1.613711 1.625333 1.651931 1.519274 1.642467 1.670421
## [57] 1.633847 1.622218 1.599679 1.662413 1.661616 1.640131 1.693077
## [64] 1.694637 1.671087 1.673662 1.696502 1.609981 1.680617 1.695767
## [71] 1.677848 1.591312 1.591312 1.591312 1.591312 1.591312 1.591312
## [78] 1.591312 1.670421 1.693473 1.696502 1.688888 1.684711 1.677273
## [85] 1.663969 1.697223 1.673662 1.698969 1.691866 1.686150 1.693077
## [92] 1.680077 1.677848 1.623794 1.649963 1.657435 1.633847 1.640131
## [99] 1.662413 1.654754 1.648952 1.673662 1.563552 1.676101 1.637697
## [106] 1.585028 1.640131 1.592709 1.595106 1.519274 1.666943 1.609981
## [113] 1.566984 1.622218 1.640131 1.629736 1.566984 1.440362 1.585028
## [120] 1.486515 1.591312 1.539560 1.440362 1.386059 1.599679 1.597428
## [127] 1.606038 1.524751 1.524751 1.534872 1.548286 1.579450 1.566984
## [134] 1.638926 1.645803 1.451088 1.662413 1.667659 1.649963 1.635158
## [141] 1.729646 1.687995 1.695767 1.696136 1.678416 1.727220 1.690616
## [148] 1.718150 1.709533 1.591312 1.591312 1.591312 1.591312 1.591312
## [155] 1.591312 1.591312 1.691866 1.690191 1.692274 1.686619 1.662413
## [162] 1.591312 1.591312 1.642467 1.699645 1.693473 1.668364 1.686150
## [169] 1.623794 1.608037 1.631137 1.576507 1.620602 1.661616 1.585028
## [176] 1.592709 1.623794 1.601862 1.587675 1.658298 1.591312 1.660807
## [183] 1.606038 1.659148 1.674284 1.681677 1.645803 1.582289 1.642467
## [190] 1.591312 1.657435 1.663197 1.650956 1.591312 1.585028 1.606038
## [197] 1.591312 1.591312 1.591312 1.591312 1.591312 1.591312 1.591312
## [204] 1.591312 1.591312 1.591312 1.591312 1.591312 1.591312 1.591312
## [211] 1.591312 1.591312 1.591312 1.591312 1.591312 1.591312 1.591312
## [218] 1.591312 1.591312 1.591312 1.712899 1.721786 1.721268 1.688888
## [225] 1.688444 1.710530 1.591312 1.591312 1.591312 1.591312 1.591312
## [232] 1.591312 1.591312 1.620602 1.618945 1.609981 1.648952 1.669745
## [239] 1.689327 1.632507 1.646873 1.684220 1.643601 1.618945 1.673032
## [246] 1.670421 1.601862 1.659984 1.659984 1.671087 1.644713 1.680617
## [253] 1.653829 1.635158 1.625333 1.629736 1.566984 1.597428 1.592709
## [260] 1.591312 1.674898 1.591312 1.613711 1.620602 1.591312 1.675503
## [267] 1.615501 1.591312 1.671087 1.661616 1.637697 1.658298 1.609981
## [274] 1.686619 1.628302 1.657435 1.644713 1.579450 1.657435 1.665478
## [281] 1.629736 1.643601 1.687995 1.620602 1.674898 1.654754 1.690616
## [288] 1.645803 1.651931 1.676691 1.640131 1.650956 1.615501 1.601862
## [295] 1.632507 1.712439 1.658298 1.713352 1.648952 1.706352 1.631137
## [302] 1.653829 1.678416 1.659984 1.591312 1.591312 1.591312 1.591312
## [309] 1.591312 1.591312 1.591312 1.591312 1.650956 1.680077 1.693865
## [316] 1.699645 1.591312 1.620602 1.632507 1.679530 1.615501 1.648952
## [323] 1.661616 1.591312 1.670421 1.676101 1.660807 1.663197 1.657435
## [330] 1.618945 1.595106 1.609981 1.638926 1.617246 1.591312 1.647922
## [337] 1.636441 1.513483 1.644713 1.587675 1.660807 1.519274 1.657435
## [344] 1.680077 1.676101 1.548286 1.591312 1.563552 1.628302 1.591312
## [351] 1.664730 1.638926 1.582289 1.682712 1.653829 1.618945 1.651931
## [358] 1.659148 1.620602 1.648952 1.633847 1.637697 1.657435 1.644713
## [365] 1.651931 1.591312 1.658298 1.623794 1.613711 1.651931 1.644713
## [372] 1.670421 1.651931 1.663969 1.679530 1.684711 1.673662 1.716359
## [379] 1.680077 1.591312 1.591312 1.591312 1.591312 1.591312 1.591312
## [386] 1.591312 1.591312 1.591312 1.591312 1.591312 1.591312 1.591312
## [393] 1.591312 1.591312 1.591312 1.591312 1.591312 1.591312 1.591312
## [400] 1.591312 1.591312 1.591312 1.591312 1.591312 1.591312 1.591312
## [407] 1.591312 1.591312 1.591312 1.591312 1.591312 1.591312 1.591312
## [414] 1.591312 1.591312 1.591312 1.591312 1.591312 1.591312 1.591312
## [421] 1.591312 1.591312 1.591312 1.591312 1.591312 1.591312 1.591312
## [428] 1.591312 1.591312 1.591312 1.591312 1.591312 1.591312 1.591312
## [435] 1.591312 1.591312 1.591312 1.591312 1.591312 1.591312 1.591312
## [442] 1.591312 1.591312 1.591312 1.591312 1.591312 1.591312 1.591312
## [449] 1.591312 1.591312 1.591312 1.591312 1.591312 1.591312 1.591312
## [456] 1.591312 1.591312 1.591312 1.591312 1.591312 1.591312 1.591312
## [463] 1.591312 1.591312 1.591312 1.591312 1.591312 1.591312 1.591312
## [470] 1.591312 1.591312 1.591312 1.591312 1.591312 1.591312 1.591312
## [477] 1.591312 1.591312 1.591312 1.591312 1.591312 1.591312 1.591312
## [484] 1.591312 1.591312 1.591312 1.591312 1.591312 1.591312 1.591312
## [491] 1.591312 1.591312 1.591312 1.591312 1.591312 1.591312 1.591312
## [498] 1.591312 1.591312 1.591312 1.591312 1.591312 1.591312 1.591312
## [505] 1.591312 1.591312 1.591312 1.591312 1.591312 1.591312 1.591312
## [512] 1.591312 1.591312 1.591312 1.591312 1.591312 1.591312 1.591312
## [519] 1.591312 1.591312 1.591312 1.591312 1.591312 1.591312 1.591312
## [526] 1.591312 1.591312 1.591312 1.591312 1.591312 1.591312 1.591312
## [533] 1.591312 1.591312 1.591312 1.591312 1.591312 1.591312 1.591312
## [540] 1.591312 1.591312 1.591312 1.591312 1.591312 1.591312 1.591312
## [547] 1.591312 1.591312 1.591312 1.591312 1.591312 1.591312 1.591312
## [554] 1.591312 1.591312 1.591312 1.591312 1.591312 1.591312 1.591312
## [561] 1.591312 1.591312 1.591312 1.591312 1.591312 1.591312 1.591312
## [568] 1.591312 1.591312 1.591312 1.591312 1.591312 1.591312 1.591312
## [575] 1.591312 1.591312 1.591312 1.591312 1.591312 1.591312 1.591312
## [582] 1.591312 1.591312 1.591312 1.591312 1.591312 1.591312 1.591312
## [589] 1.591312 1.591312 1.591312 1.591312 1.591312 1.591312 1.591312
## [596] 1.591312 1.591312 1.591312 1.591312 1.591312 1.591312 1.591312
## [603] 1.591312 1.591312 1.591312 1.591312 1.591312 1.591312 1.591312
## [610] 1.591312 1.591312 1.591312 1.591312 1.591312 1.591312 1.591312
## [617] 1.591312 1.591312 1.591312 1.591312 1.591312 1.591312 1.591312
## [624] 1.591312 1.591312 1.591312 1.591312 1.591312 1.591312 1.591312
## [631] 1.591312 1.591312 1.591312 1.591312 1.591312 1.591312 1.591312
## [638] 1.591312 1.591312 1.591312 1.591312 1.591312 1.591312 1.591312
## [645] 1.591312 1.591312 1.591312 1.591312 1.591312 1.591312 1.591312
## [652] 1.591312 1.591312 1.591312 1.591312 1.591312 1.591312 1.591312
## [659] 1.591312 1.591312 1.591312 1.591312 1.591312 1.591312 1.591312
## [666] 1.591312 1.687541 1.686619 1.677273 1.591312 1.680617 1.681677
## [673] 1.703458 1.701282 1.676691 1.591312 1.691454 1.686150 1.657435
## [680] 1.591312 1.664730 1.636441 1.631137 1.617246 1.645803 1.649963
## [687] 1.640131 1.652888 1.623794 1.591312 1.653829 1.674284 1.609981
## [694] 1.633847 1.650956 1.669060 1.638926 1.693865 1.658298 1.659148
## [701] 1.652888 1.623794 1.687083 1.669060 1.628302 1.576507 1.658298
## [708] 1.582289 1.656556 1.678976 1.599679 1.611871 1.674898 1.599679
## [715] 1.673662 1.576507 1.563552 1.691454 1.673032 1.698626 1.684711
## [722] 1.606038 1.699645 1.591312 1.691866 1.686150 1.666216 1.701917
## [729] 1.685196 1.714021 1.674898 1.707176 1.705792 1.717367 1.704056
## [736] 1.674284 1.591312 1.591312 1.591312 1.591312 1.591312 1.591312
## [743] 1.591312 1.591312 1.519274 1.500838 1.539560 1.529943 1.513483
## [750] 1.539560 1.524751 1.507350 1.529943 1.507350 1.519274 1.544026
## [757] 1.500838 1.519274 1.534872 1.507350 1.519274 1.500838 1.544026
## [764] 1.556249 1.529943 1.539560 1.544026 1.513483 1.544026 1.534872
## [771] 1.552356 1.563552 1.529943 1.539560 1.519274 1.548286 1.552356
## [778] 1.524751 1.544026 1.534872 1.559978 1.513483 1.529943 1.539560
## [785] 1.548286 1.524751 1.539560 1.552356 1.544026 1.519274 1.573454
## [792] 1.529943 1.544026 1.519274 1.534872 1.507350 1.519274 1.529943
## [799] 1.539560 1.493908 1.534872 1.513483 1.524751 1.513483 1.544026
## [806] 1.529943 1.552356 1.519274 1.548286 1.529943 1.507350 1.559978
## [813] 1.534872 1.539560 1.539560 1.529943 1.493908 1.534872 1.524751
## [820] 1.544026 1.507350 1.534872 1.500838 1.513483 1.507350 1.524751
## [827] 1.544026 1.534872 1.524751 1.513483 1.500838 1.529943 1.534872
## [834] 1.513483 1.524751 1.552356 1.507350 1.529943 1.544026 1.524751
## [841] 1.524751 1.500838 1.529943 1.513483 1.507350 1.534872 1.500838
## [848] 1.486515 1.519274 1.507350 1.539560 1.493908 1.519274 1.529943
## [855] 1.493908 1.513483 1.470114 1.486515 1.524751 1.539560 1.513483
## [862] 1.493908 1.500838 1.478604 1.486515 1.519274 1.548286 1.552356
## [869] 1.544026 1.552356 1.529943 1.534872 1.519274 1.524751 1.539560
## [876] 1.529943 1.539560 1.529943 1.573454 1.524751 1.539560 1.534872
## [883] 1.519274 1.556249 1.539560 1.507350 1.548286 1.534872 1.544026
## [890] 1.524751 1.544026 1.529943 1.539560 1.576507 1.563552 1.507350
## [897] 1.534872 1.534872 1.556249 1.513483 1.539560 1.556249 1.579450
## [904] 1.559978 1.544026 1.440362 1.401728 1.348807 1.386059 1.326330
## [911] 1.270167 1.524751 1.548286 1.507350 1.529943 1.544026 1.534872
## [918] 1.500838 1.534872 1.539560 1.529943 1.556249 1.519274 1.559978
## [925] 1.534872 1.507350 1.524751 1.552356 1.539560 1.570282 1.544026
## [932] 1.552356 1.519274 1.556249 1.544026 1.270167 1.470114 1.326330
## [939] 1.451088 1.534872 1.428667 1.493908 1.513483 1.524751 1.478604
## [946] 1.493908 1.507350 1.534872 1.519274 1.500838 1.519274 1.529943
## [953] 1.507350 1.493908 1.534872 1.524751 1.534872 1.507350 1.534872
## [960] 1.524751 1.486515 1.539560 1.519274 1.513483 1.524751 1.348807
## [967] 1.368547 1.386059 1.348807 1.440362 1.401728 1.428667 1.507350
## [974] 1.524751 1.493908 1.534872 1.524751 1.486515 1.519274 1.529943
## [981] 1.513483 1.500838 1.534872 1.544026 1.556249 1.519274 1.529943
## [988] 1.524751 1.534872 1.552356 1.493908 1.513483 1.548286 1.524751
## [995] 1.544026 1.507350 1.507350 1.493908 1.529943 1.552356 1.486515
## [1002] 1.507350 1.478604 1.507350 1.513483 1.500838 1.534872 1.529943
## [1009] 1.544026 1.524751 1.552356 1.500838 1.500838 1.519274 1.529943
## [1016] 1.539560 1.524751 1.556249 1.539560 1.513483 1.486515 1.529943
## [1023] 1.348807 1.507350 1.386059 1.529943 1.507350 1.529943 1.539560
## [1030] 1.524751 1.513483 1.493908 1.534872 1.529943 1.529943 1.513483
## [1037] 1.539560 1.552356 1.519274 1.486515 1.534872 1.548286 1.539560
## [1044] 1.519274 1.544026 1.534872 1.500838 1.556249 1.529943 1.534872
## [1051] 1.524751 1.513483 1.500838 1.544026 1.529943 1.524751 1.493908
## [1058] 1.534872 1.524751 1.548286 1.513483 1.519274 1.539560 1.534872
## [1065] 1.524751 1.544026 1.513483 1.544026 1.500838 1.556249 1.548286
## [1072] 1.529943 1.539560 1.529943 1.507350 1.524751 1.539560 1.519274
## [1079] 1.544026 1.513483 1.539560 1.529943 1.513483 1.544026 1.500838
## [1086] 1.519274 1.556249 1.513483 1.524751 1.529943 1.524751 1.544026
## [1093] 1.519274 1.556249 1.534872 1.539560 1.513483 1.544026 1.539560
## [1100] 1.524751 1.556249 1.544026 1.507350 1.570282 1.519274 1.529943
## [1107] 1.529943 1.552356 1.573454 1.524751 1.534872 1.563552 1.507350
## [1114] 1.524751 1.539560 1.524751 1.552356 1.563552 1.582289 1.513483
## [1121] 1.548286 1.529943 1.544026 1.513483 1.529943 1.534872 1.507350
## [1128] 1.552356 1.493908 1.507350 1.519274 1.529943 1.539560 1.507350
## [1135] 1.486515 1.513483 1.534872 1.513483 1.513483 1.534872 1.519274
## [1142] 1.552356 1.513483 1.539560 1.544026 1.500838 1.539560 1.524751
## [1149] 1.552356 1.529943 1.556249 1.534872 1.507350 1.524751 1.539560
## [1156] 1.529943 1.552356 1.534872 1.507350 1.548286 1.524751 1.529943
## [1163] 1.544026 1.559978 1.548286 1.529943 1.529943 1.552356 1.534872
## [1170] 1.519274 1.539560 1.524751 1.548286 1.507350 1.519274 1.534872
## [1177] 1.591312 1.524751 1.513483 1.529943 1.539560 1.519274 1.524751
## [1184] 1.556249 1.539560 1.534872 1.519274 1.552356 1.548286 1.534872
## [1191] 1.524751 1.539560 1.544026 1.563552 1.566984 1.534872 1.529943
## [1198] 1.548286 1.544026 1.552356 1.534872 1.556249 1.552356 1.524751
## [1205] 1.548286 1.524751 1.544026 1.592709 1.548286 1.529943 1.539560
## [1212] 1.519274 1.566984 1.544026 1.529943 1.576507 1.563552 1.552356
## [1219] 1.524751 1.563552 1.544026 1.548286 1.566984 1.519274 1.556249
## [1226] 1.548286 1.539560 1.559978 1.570282 1.552356 1.559978 1.539560
## [1233] 1.556249 1.544026 1.539560 1.570282 1.556249 1.552356 1.579450
## [1240] 1.529943 1.548286 1.539560 1.556249 1.576507 1.559978 1.548286
## [1247] 1.519274 1.563552 1.570282 1.552356 1.548286 1.563552 1.570282
## [1254] 1.585028 1.563552 1.548286 1.539560 1.529943 1.556249 1.539560
## [1261] 1.576507 1.529943 1.548286 1.582289 1.556249 1.570282 1.552356
## [1268] 1.559978 1.544026 1.563552 1.585028 1.556249 1.559978 1.493908
## [1275] 1.513483 1.500838 1.539560 1.524751 1.544026 1.507350 1.529943
## [1282] 1.507350 1.524751 1.500838 1.534872 1.544026 1.534872 1.513483
## [1289] 1.529943 1.519274 1.534872 1.493908 1.524751 1.534872 1.552356
## [1296] 1.529943 1.548286 1.451088 1.470114 1.428667 1.486515 1.368547
## [1303] 1.470114 1.386059 1.534872 1.524751 1.513483 1.552356 1.563552
## [1310] 1.507350 1.544026 1.529943 1.544026 1.519274 1.556249 1.524751
## [1317] 1.548286 1.500838 1.524751 1.507350 1.552356 1.524751 1.544026
## [1324] 1.534872 1.548286 1.556249 1.507350 1.519274 1.500838 1.486515
## [1331] 1.524751 1.493908 1.548286 1.513483 1.529943 1.493908 1.529943
## [1338] 1.500838 1.534872 1.544026 1.524751 1.500838 1.529943 1.513483
## [1345] 1.524751 1.486515 1.544026 1.556249 1.513483 1.548286 1.513483
## [1352] 1.493908 1.552356 1.539560 1.519274 1.529943 1.539560 1.507350
## [1359] 1.544026 1.513483 1.544026 1.529943 1.552356 1.544026 1.519274
## [1366] 1.534872 1.552356 1.524751 1.548286 1.552356 1.529943 1.539560
## [1373] 1.556249 1.529943 1.566984 1.534872 1.552356 1.579450 1.548286
## [1380] 1.556249 1.566984 1.544026 1.563552 1.548286 1.559978 1.548286
## [1387] 1.570282 1.552356 1.563552 1.539560 1.566984 1.552356 1.566984
## [1394] 1.552356 1.582289 1.548286 1.566984 1.544026 1.556249 1.552356
## [1401] 1.415852 1.486515 1.386059 1.451088 1.386059 1.440362 1.563552
## [1408] 1.548286 1.529943 1.552356 1.559978 1.573454 1.544026 1.559978
## [1415] 1.563552 1.563552 1.539560 1.556249 1.563552 1.563552 1.539560
## [1422] 1.556249 1.552356 1.573454 1.529943 1.566984 1.556249 1.559978
## [1429] 1.539560 1.556249 1.563552 1.539560 1.529943 1.559978 1.570282
## [1436] 1.519274 1.556249 1.539560 1.544026 1.563552 1.559978 1.576507
## [1443] 1.563552 1.534872 1.524751 1.552356 1.552356 1.556249 1.563552
## [1450] 1.552356 1.570282 1.556249 1.556249 1.548286 1.559978 1.563552
## [1457] 1.552356 1.570282 1.539560 1.559978 1.573454 1.556249 1.552356
## [1464] 1.563552 1.552356 1.539560 1.585028 1.563552 1.529943 1.559978
## [1471] 1.544026 1.524751 1.534872 1.513483 1.529943 1.534872 1.513483
## [1478] 1.534872 1.507350 1.544026 1.519274 1.529943 1.513483 1.539560
## [1485] 1.519274 1.544026 1.513483 1.556249 1.519274 1.534872 1.539560
## [1492] 1.529943 1.513483 1.507350 1.519274 1.524751 1.519274 1.529943
## [1499] 1.534872 1.524751 1.519274 1.548286 1.539560 1.529943 1.507350
## [1506] 1.529943 1.534872 1.524751 1.529943 1.529943 1.539560 1.524751
## [1513] 1.529943 1.548286 1.534872 1.519274 1.507350 1.524751 1.539560
## [1520] 1.524751 1.548286 1.556249 1.563552 1.552356 1.544026 1.559978
## [1527] 1.563552 1.570282 1.539560 1.544026 1.539560 1.556249 1.529943
## [1534] 1.548286 1.563552 1.556249 1.566984 1.548286 1.573454 1.544026
## [1541] 1.534872 1.570282 1.552356 1.544026 1.563552 1.556249 1.539560
## [1548] 1.570282 1.576507 1.544026 1.552356 1.534872 1.507350 1.524751
## [1555] 1.500838 1.519274 1.539560 1.556249 1.513483 1.519274 1.524751
## [1562] 1.539560 1.529943 1.519274 1.500838 1.544026 1.507350 1.548286
## [1569] 1.529943 1.507350 1.548286 1.534872 1.507350 1.529943 1.519274
## [1576] 1.544026 1.539560 1.524751 1.548286 1.534872 1.548286 1.556249
## [1583] 1.529943 1.548286 1.529943 1.552356 1.548286 1.524751 1.534872
## [1590] 1.556249 1.519274 1.548286 1.534872 1.552356 1.539560 1.570282
## [1597] 1.556249 1.524751 1.548286 1.529943 1.548286 1.548286 1.559978
## [1604] 1.573454 1.539560 1.552356 1.556249 1.563552 1.559978 1.552356
## [1611] 1.539560 1.563552 1.552356 1.576507 1.548286 1.539560 1.544026
## [1618] 1.556249 1.544026 1.552356 1.566984 1.559978 1.576507 1.570282
## [1625] 1.563552 1.556249 1.548286 1.529943 1.539560 1.548286 1.556249
## [1632] 1.570282 1.563552 1.548286 1.539560 1.556249 1.507350 1.534872
## [1639] 1.478604 1.552356 1.519274 1.507350 1.529943 1.513483 1.513483
## [1646] 1.548286 1.524751 1.507350 1.534872 1.500838 1.519274 1.556249
## [1653] 1.529943 1.507350 1.524751 1.544026 1.500838 1.559978 1.539560
## [1660] 1.524751 1.544026 1.519274 1.507350 1.529943 1.500838 1.524751
## [1667] 1.539560 1.534872 1.524751 1.500838 1.544026 1.507350 1.529943
## [1674] 1.539560 1.524751 1.507350 1.534872 1.507350 1.539560 1.524751
## [1681] 1.529943 1.544026 1.534872 1.519274 1.513483 1.529943 1.507350
## [1688] 1.524751 1.539560 1.486515 1.556249 1.534872 1.529943 1.519274
## [1695] 1.534872 1.556249 1.544026 1.513483 1.534872 1.507350 1.519274
## [1702] 1.539560 1.529943 1.539560 1.552356 1.513483 1.559978 1.529943
## [1709] 1.524751 1.493908 1.544026 1.513483 1.556249 1.539560 1.493908
## [1716] 1.534872 1.544026 1.519274 1.524751 1.507350 1.539560 1.552356
## [1723] 1.513483 1.529943 1.548286 1.507350 1.544026 1.552356 1.529943
## [1730] 1.539560 1.513483 1.534872 1.534872 1.566984 1.539560 1.570282
## [1737] 1.519274 1.548286 1.524751 1.556249 1.529943 1.559978 1.570282
## [1744] 1.548286 1.544026 1.552356 1.539560 1.559978 1.573454 1.556249
## [1751] 1.559978 1.544026 1.529943 1.556249 1.548286 1.524751 1.556249
## [1758] 1.548286 1.539560 1.529943 1.519274 1.534872 1.539560 1.529943
## [1765] 1.539560 1.548286 1.524751 1.556249 1.534872 1.529943 1.539560
## [1772] 1.556249 1.534872 1.566984 1.544026 1.529943 1.556249 1.548286
## [1779] 1.563552 1.513483 1.486515 1.524751 1.544026 1.529943 1.507350
## [1786] 1.548286 1.556249 1.544026 1.500838 1.566984 1.556249 1.524751
## [1793] 1.534872 1.539560 1.570282 1.552356 1.534872 1.507350 1.559978
## [1800] 1.539560 1.548286 1.548286 1.556249 1.524751 1.534872 1.500838
## [1807] 1.529943 1.544026 1.524751 1.529943 1.544026 1.552356 1.539560
## [1814] 1.507350 1.534872 1.559978 1.519274 1.544026 1.519274 1.534872
## [1821] 1.552356 1.539560 1.529943 1.548286 1.534872
## attr(,"lambda")
## [1] -0.5544645
histogram(BoxCox_PM2.5)
By the above histogram we can see that the plot has decreased the skewness to a large extent even though there is a little skewness the histogram has improved
skewness(BoxCox_PM2.5)
## [1] 0.1010622
The skewness of the column PM.2.5 was 3.092601 has improved after using the function BoxCox which has decreased to 0.1010622
————————————————————————-END———————————————————–