Radar Plots
op <- par(no.readonly = TRUE)
library(fmsb)
par(mfrow = c(1,2),xpd = TRUE,pty = "s",mar = c(1,1,1,1))
mNames <- names(cp$cpuElapsedTimes)
classRanks <- c(pr$minMaxMetrics$BER[1],pr$minMaxMetrics$ACC[2],pr$minMaxMetrics$AUC[2],pr$minMaxMetrics$SEN[2],pr$minMaxMetrics$SPE[2],min(cp$cpuElapsedTimes))
classRanks <- rbind(classRanks,c(pr$minMaxMetrics$BER[2],0,0,0,0,max(cp$cpuElapsedTimes)))
classRanks <- as.data.frame(rbind(classRanks,cbind(t(pr$metrics[c("BER","ACC","AUC","SEN","SPE"),mNames]),cp$cpuElapsedTimes)))
colnames(classRanks) <- c("BER","ACC","AUC","SEN","SPE","CPU")
classRanks$BER <- -classRanks$BER
classRanks$CPU <- -classRanks$CPU
colors_border = c( rgb(1.0,0.0,0.0,1.0), rgb(0.0,1.0,0.0,1.0) , rgb(0.0,0.0,1.0,1.0), rgb(0.2,0.2,0.0,1.0), rgb(0.0,1.0,1.0,1.0), rgb(1.0,0.0,1.0,1.0), rgb(0.0,0.0,0.0,1.0) )
colors_in = c( rgb(1.0,0.0,0.0,0.05), rgb(0.0,1.0,0.0,0.05) , rgb(0.0,0.0,1.0,0.05),rgb(1.0,1.0,0.0,0.05), rgb(0.0,1.0,1.0,0.05) , rgb(1.0,0.0,1.0,0.05), rgb(0.0,0.0,0.0,0.05) )
radarchart(classRanks,axistype = 0,maxmin = T,pcol = colors_border,pfcol = colors_in,plwd = c(6,2,2,2,2,2,2),plty = 1, cglcol = "grey", cglty = 1,axislabcol = "black",cglwd = 0.8, vlcex = 0.5 ,title = "Prediction Model")
legend("topleft",legend = rownames(classRanks[-c(1,2),]),bty = "n",pch = 20,col = colors_in,text.col = colors_border,cex = 0.5,pt.cex = 2)
filnames <- c("BSWiMS","LASSO","RF.ref","IDI","t-test","Kendall","mRMR")
filterRanks <- c(pr$minMaxMetrics$BER[1],pr$minMaxMetrics$ACC[2],pr$minMaxMetrics$AUC[2],pr$minMaxMetrics$SEN[2],pr$minMaxMetrics$SPE[2],max(cp$jaccard),min(cp$featsize));
filterRanks <- rbind(filterRanks,c(pr$minMaxMetrics$BER[2],0,0,0,0,min(cp$jaccard),max(cp$featsize)));
filterRanks <- as.data.frame(rbind(filterRanks,cbind(t(pr$metrics_filter[c("BER","ACC","AUC","SEN","SPE"),filnames]),cp$jaccard[filnames],cp$featsize[filnames])));
colnames(filterRanks) <- c("BER","ACC","AUC","SEN","SPE","Jaccard","SIZE")
filterRanks$BER <- -filterRanks$BER
filterRanks$SIZE <- -filterRanks$SIZE
colors_border = c( rgb(1.0,0.0,0.0,1.0), rgb(0.0,1.0,0.0,1.0) , rgb(0.0,0.0,1.0,1.0), rgb(0.2,0.2,0.0,1.0), rgb(0.0,1.0,1.0,1.0), rgb(1.0,0.0,1.0,1.0), rgb(0.0,0.0,0.0,1.0) )
colors_in = c( rgb(1.0,0.0,0.0,0.05), rgb(0.0,1.0,0.0,0.05) , rgb(0.0,0.0,1.0,0.05),rgb(1.0,1.0,0.0,0.05), rgb(0.0,1.0,1.0,0.05) , rgb(1.0,0.0,1.0,0.05), rgb(0.0,0.0,0.0,0.05) )
radarchart(filterRanks,axistype = 0,maxmin = T,pcol = colors_border,pfcol = colors_in,plwd = c(6,2,2,2,2,2,2),plty = 1, cglcol = "grey", cglty = 1,axislabcol = "black",cglwd = 0.8, vlcex = 0.6,title = "Filter Method" )
legend("topleft",legend = rownames(filterRanks[-c(1,2),]),bty = "n",pch = 20,col = colors_in,text.col = colors_border,cex = 0.5,pt.cex = 2)

detach("package:fmsb", unload=TRUE)
par(mfrow = c(1,1))
par(op)
Feature Analysis
rm <- rowMeans(cp$featureSelectionFrequency)
selFrequency <- cp$featureSelectionFrequency[rm > 0.1,]
gplots::heatmap.2(selFrequency,trace = "none",mar = c(10,10),main = "Features",cexRow = 0.5)

topFeat <- min(ncol(BSWiMSMODEL$bagging$formulaNetwork),30);
gplots::heatmap.2(BSWiMSMODEL$bagging$formulaNetwork[1:topFeat,1:topFeat],trace="none",mar = c(10,10),main = "B:SWiMS Formula Network")

pander::pander(summary(BSWiMSMODEL$bagging$bagged.model,caption="Colon",round = 3))
coefficients:
Table continues below
| M23197_at |
0.02094 |
1.021 |
1.021 |
1.021 |
0.9405 |
| M11722_at |
-0.0005205 |
0.9995 |
0.9995 |
0.9995 |
0.9 |
| U46499_at |
0.006506 |
1.007 |
1.007 |
1.007 |
0.9264 |
| M27891_at |
0.0002253 |
1 |
1 |
1 |
0.94 |
| X95735_at |
0.0002531 |
1 |
1 |
1 |
0.9456 |
| M31523_at |
-0.000957 |
0.999 |
0.999 |
0.9991 |
0.9259 |
| M63379_at |
0.03053 |
1.027 |
1.031 |
1.035 |
0.8694 |
| L09209_s_at |
0.007382 |
1.007 |
1.007 |
1.008 |
0.909 |
| M92287_at |
-0.0001924 |
0.9998 |
0.9998 |
0.9998 |
0.8912 |
| M84526_at |
0.0002038 |
1 |
1 |
1 |
0.9417 |
| D88422_at |
0.000485 |
1 |
1 |
1.001 |
0.912 |
| U05259_rna1_at |
-0.0005299 |
0.9994 |
0.9995 |
0.9996 |
0.8444 |
| J05243_at |
-0.09255 |
0.898 |
0.9116 |
0.9254 |
0.8711 |
| X62654_rna1_at |
0.006698 |
1.005 |
1.007 |
1.008 |
0.876 |
| D88270_at |
-3.932e-05 |
1 |
1 |
1 |
0.8403 |
| HG1612.HT1612_at |
-0.003471 |
0.9958 |
0.9965 |
0.9973 |
0.822 |
| M62982_at |
0.06068 |
1.047 |
1.063 |
1.078 |
0.5926 |
| X51521_at |
-0.000733 |
0.9991 |
0.9993 |
0.9994 |
0.7639 |
| Y07604_at |
0.007428 |
1.006 |
1.007 |
1.009 |
0.8206 |
| X59417_at |
-0.0006307 |
0.9992 |
0.9994 |
0.9995 |
0.8755 |
| U16954_at |
-0.05569 |
0.9321 |
0.9458 |
0.9598 |
0.7778 |
| X68560_at |
-0.02605 |
0.9676 |
0.9743 |
0.981 |
0.7216 |
| M13690_s_at |
0.01347 |
1.01 |
1.014 |
1.017 |
0.7812 |
| U09578_at |
0.03882 |
1.027 |
1.04 |
1.053 |
0.7639 |
Table continues below
| M23197_at |
0.3472 |
0.9405 |
0.9352 |
0.5 |
0.9352 |
| M11722_at |
0.3472 |
0.9 |
0.914 |
0.5 |
0.914 |
| U46499_at |
0.3472 |
0.9264 |
0.9152 |
0.5 |
0.9152 |
| M27891_at |
0.3472 |
0.94 |
0.9371 |
0.5 |
0.9371 |
| X95735_at |
0.3472 |
0.9456 |
0.9412 |
0.5 |
0.9412 |
| M31523_at |
0.3472 |
0.9259 |
0.9319 |
0.5 |
0.9319 |
| M63379_at |
0.4944 |
0.9444 |
0.8582 |
0.5522 |
0.9387 |
| L09209_s_at |
0.4398 |
0.9329 |
0.8996 |
0.5581 |
0.9263 |
| M92287_at |
0.3472 |
0.8912 |
0.9008 |
0.5 |
0.9008 |
| M84526_at |
0.3472 |
0.9417 |
0.918 |
0.5 |
0.918 |
| D88422_at |
0.3472 |
0.912 |
0.896 |
0.5 |
0.896 |
| U05259_rna1_at |
0.5194 |
0.8991 |
0.8696 |
0.6157 |
0.914 |
| J05243_at |
0.5486 |
0.9151 |
0.8841 |
0.6337 |
0.9233 |
| X62654_rna1_at |
0.7205 |
0.9491 |
0.8697 |
0.771 |
0.9479 |
| D88270_at |
0.5625 |
0.8935 |
0.8777 |
0.6462 |
0.9138 |
| HG1612.HT1612_at |
0.7668 |
0.9394 |
0.8287 |
0.7718 |
0.9456 |
| M62982_at |
0.8704 |
0.9954 |
0.587 |
0.8612 |
0.9954 |
| X51521_at |
0.4352 |
0.8009 |
0.7812 |
0.5617 |
0.8153 |
| Y07604_at |
0.6291 |
0.8976 |
0.8251 |
0.6936 |
0.8993 |
| X59417_at |
0.7671 |
0.9579 |
0.894 |
0.7942 |
0.9624 |
| U16954_at |
0.8307 |
0.9517 |
0.7892 |
0.8462 |
0.9528 |
| X68560_at |
0.7454 |
0.9233 |
0.7404 |
0.7809 |
0.9314 |
| M13690_s_at |
0.7633 |
0.9236 |
0.7712 |
0.7895 |
0.9294 |
| U09578_at |
0.8773 |
0.9861 |
0.7505 |
0.8842 |
0.9878 |
| M23197_at |
0.835 |
1.752 |
99262102 |
Inf |
1 |
| M11722_at |
0.7371 |
1.682 |
22600307 |
1.498e+306 |
1 |
| U46499_at |
0.6978 |
1.686 |
11563925 |
Inf |
1 |
| M27891_at |
0.8164 |
1.765 |
21.93 |
20.32 |
1 |
| X95735_at |
0.8067 |
1.78 |
21.06 |
21.37 |
1 |
| M31523_at |
0.8023 |
1.726 |
20.43 |
18.36 |
1 |
| M63379_at |
0.7148 |
1.765 |
17.3 |
Inf |
0.25 |
| L09209_s_at |
0.7003 |
1.709 |
16.46 |
Inf |
1 |
| M92287_at |
0.717 |
1.618 |
16.22 |
14.34 |
1 |
| M84526_at |
0.7123 |
1.656 |
15.88 |
15.84 |
1 |
| D88422_at |
0.7122 |
1.588 |
15.86 |
14.05 |
1 |
| U05259_rna1_at |
0.5823 |
1.667 |
12.09 |
23.74 |
0.25 |
| J05243_at |
0.5724 |
1.67 |
12.08 |
Inf |
0.6 |
| X62654_rna1_at |
0.4229 |
1.66 |
9.312 |
Inf |
0.95 |
| D88270_at |
0.4438 |
1.433 |
9.185 |
11.31 |
0.1 |
| HG1612.HT1612_at |
0.4479 |
1.742 |
9.113 |
Inf |
0.55 |
| M62982_at |
0.4257 |
1.872 |
8.302 |
41.2 |
0.15 |
| X51521_at |
0.4161 |
1.281 |
8.126 |
Inf |
0.3 |
| Y07604_at |
0.3738 |
1.582 |
7.668 |
18.23 |
0.4 |
| X59417_at |
0.3533 |
1.635 |
7.647 |
2.996e+306 |
0.5 |
| U16954_at |
0.3663 |
1.475 |
7.44 |
Inf |
0.35 |
| X68560_at |
0.3469 |
1.703 |
7.401 |
Inf |
0.35 |
| M13690_s_at |
0.3344 |
1.571 |
6.966 |
Inf |
0.4 |
| U09578_at |
0.2862 |
1.929 |
6.092 |
1.498e+307 |
0.1 |
- Accuracy: 1
- tAUC: 1
- sensitivity: 1
- specificity: 1
bootstrap:
hm <- heatMaps(Outcome = theOutcome,data = theData[,c(theOutcome,rownames(selFrequency))],title = "Heat Map",Scale = TRUE,hCluster = "col",cexRow = 0.25,cexCol = 0.75,srtCol = 45)

vlist <- rownames(selFrequency)
vlist <- cbind(vlist,vlist)
univ <- univariateRankVariables(variableList = vlist,formula = paste(theOutcome,"~1"),Outcome = theOutcome,data = theData,type = "LOGIT",rankingTest = "zIDI",uniType = "Binary")[,c("controlMean","controlStd","caseMean","caseStd","ROCAUC","WilcoxRes.p")]
cnames <- colnames(univ);
univ <- cbind(univ,rm[rownames(univ)])
colnames(univ) <- c(cnames,"Frequency")
univ <- univ[order(-univ[,5]),]
pander::pander(univ[1:topFeat,],caption = "Features",round = 4)
Features (continued below)
| M23197_at |
174.7 |
84.97 |
872.8 |
523.3 |
0.9889 |
| X95735_at |
378.1 |
532.7 |
3286 |
1682 |
0.9787 |
| M27891_at |
185.5 |
451.9 |
9120 |
7377 |
0.9779 |
| M31523_at |
1402 |
834.7 |
313.4 |
133.7 |
0.977 |
| U46499_at |
143.8 |
464.4 |
1333 |
741.7 |
0.9715 |
| L09209_s_at |
541.9 |
606 |
2691 |
1545 |
0.9702 |
| D88422_at |
150.6 |
129.3 |
2790 |
3002 |
0.954 |
| J05243_at |
806.5 |
515.9 |
165.6 |
155.7 |
0.9506 |
| M92287_at |
4255 |
2465 |
975.4 |
466.7 |
0.9481 |
| M63138_at |
1672 |
722.6 |
5609 |
3228 |
0.9472 |
| X62654_rna1_at |
641.9 |
416.5 |
2226 |
1549 |
0.9464 |
| M11722_at |
3936 |
3192 |
182.4 |
307.1 |
0.9438 |
| M63379_at |
315.6 |
111.4 |
1595 |
2290 |
0.934 |
| M84526_at |
-137.7 |
177.1 |
5125 |
4234 |
0.9315 |
| M31211_s_at |
512 |
252.3 |
159.6 |
121.4 |
0.9302 |
| X61587_at |
331.1 |
548.3 |
1778 |
1111 |
0.9298 |
| M96326_rna1_at |
657.3 |
601.7 |
8311 |
8056 |
0.9277 |
| M16038_at |
371.4 |
267 |
1536 |
896.9 |
0.9268 |
| X59417_at |
4199 |
2259 |
1112 |
545.5 |
0.9234 |
| Z15115_at |
3903 |
2266 |
1489 |
585.8 |
0.92 |
| M19507_at |
443 |
784.6 |
8605 |
8301 |
0.92 |
| X62320_at |
744.7 |
333.4 |
3648 |
3539 |
0.9166 |
| HG1612.HT1612_at |
3768 |
1903 |
1369 |
907.8 |
0.9166 |
| M83652_s_at |
53.09 |
271.1 |
1374 |
1384 |
0.9149 |
| X17042_at |
1717 |
1738 |
6495 |
2751 |
0.9149 |
| M22960_at |
456.8 |
354.5 |
1802 |
1041 |
0.9119 |
| U05259_rna1_at |
4161 |
2997 |
411.6 |
389.7 |
0.9106 |
| L47738_at |
1011 |
761.8 |
242.5 |
201.6 |
0.9106 |
| M55150_at |
740.9 |
343.1 |
1595 |
578.6 |
0.9013 |
| U16954_at |
348 |
569.4 |
-50.64 |
102.3 |
0.9004 |
| M23197_at |
0 |
0.872 |
| X95735_at |
0 |
0.6627 |
| M27891_at |
0 |
0.656 |
| M31523_at |
0 |
0.664 |
| U46499_at |
0 |
0.8 |
| L09209_s_at |
0 |
0.3307 |
| D88422_at |
0 |
0.4027 |
| J05243_at |
0 |
0.6987 |
| M92287_at |
0 |
0.7587 |
| M63138_at |
0 |
0.3773 |
| X62654_rna1_at |
0 |
0.308 |
| M11722_at |
0 |
0.78 |
| M63379_at |
0 |
0.3787 |
| M84526_at |
0 |
0.7067 |
| M31211_s_at |
0 |
0.4973 |
| X61587_at |
0 |
0.1787 |
| M96326_rna1_at |
0 |
0.448 |
| M16038_at |
0 |
0.5307 |
| X59417_at |
0 |
0.6907 |
| Z15115_at |
0 |
0.2573 |
| M19507_at |
0 |
0.536 |
| X62320_at |
0 |
0.2413 |
| HG1612.HT1612_at |
0 |
0.5547 |
| M83652_s_at |
0 |
0.4427 |
| X17042_at |
0 |
0.62 |
| M22960_at |
0 |
0.4533 |
| U05259_rna1_at |
0 |
0.62 |
| L47738_at |
0 |
0.392 |
| M55150_at |
0 |
0.56 |
| U16954_at |
0 |
0.2547 |