1 FRESA.CAD ARCENE Benchmark

1.1 ARCENE


trainLabeled <- read.delim("C:/Users/Jose Tamez/Dropbox/Documents/FRESACAD/FresaPaper/FresaPaper/Arcene/ARCENE/trainSet.txt")
validLabeled <- read.delim("C:/Users/Jose Tamez/Dropbox/Documents/FRESACAD/FresaPaper/FresaPaper/Arcene/ARCENE/arcene_valid.txt")

trainLabeled$Labels <-  1*(trainLabeled$Labels > 0)
validLabeled$Labels <-  1*(validLabeled$Labels > 0)

sum(trainLabeled$Labels)
sum(validLabeled$Labels)

arcene <- rbind(trainLabeled,validLabeled)
arcene <- as.data.frame(arcene)

ExperimentName <- "ARCENE"
bswimsReps <- 10;
theData <- arcene;
theOutcome <- "Labels";
reps <- 30;
fraction <- 0.5;

BSWiMSFileName <- paste(ExperimentName,"FRESAMethod.RDATA",sep = "_")
CVFileName <- paste(ExperimentName,"CVMethod.RDATA",sep = "_")

1.2 Benchmarking



BSWiMSMODEL <- BSWiMS.model(formula = paste(theOutcome," ~ 1"),data = theData,NumberofRepeats = bswimsReps)

#save(BSWiMSMODEL,file = BSWiMSFileName)

#load(file = BSWiMSFileName)

par(mfrow = c(2,2),cex=0.6);
cp <- BinaryBenchmark(theData,theOutcome,reps,fraction)

par(mfrow = c(1,1),cex=1.0);

#save(cp,file = CVFileName)

#load(file = CVFileName)

1.3 Results

1.3.1 Classifier Results


hm <- heatMaps(Outcome = "Outcome",data = cp$testPredictions,title = "Heat Map",Scale = TRUE,hCluster = "col",cexRow = 0.25,cexCol = 0.75,srtCol = 45) 


#The Times
pander::pander(cp$cpuElapsedTimes)
BSWiMS RF RPART LASSO SVM KNN ENS
46.84 88.02 8.344 1.709 0.04567 0.029 145
learningTime <- -1*cp$cpuElapsedTimes
par(mfrow = c(2,1),cex=1.0);
pr <- plot(cp)

par(mfrow = c(1,1),cex=1.0);

1.3.2 Radar Plots

op <- par(no.readonly = TRUE)

library(fmsb)
par(mfrow = c(1,2),xpd = TRUE,pty = "s",mar = c(1,1,1,1))

mNames <- names(cp$cpuElapsedTimes)

classRanks <- c(pr$minMaxMetrics$BER[1],pr$minMaxMetrics$ACC[2],pr$minMaxMetrics$AUC[2],pr$minMaxMetrics$SEN[2],pr$minMaxMetrics$SPE[2],min(cp$cpuElapsedTimes))
classRanks <- rbind(classRanks,c(pr$minMaxMetrics$BER[2],0,0,0,0,max(cp$cpuElapsedTimes)))
classRanks <- as.data.frame(rbind(classRanks,cbind(t(pr$metrics[c("BER","ACC","AUC","SEN","SPE"),mNames]),cp$cpuElapsedTimes)))
colnames(classRanks) <- c("BER","ACC","AUC","SEN","SPE","CPU")

classRanks$BER <- -classRanks$BER
classRanks$CPU <- -classRanks$CPU

colors_border = c( rgb(1.0,0.0,0.0,1.0), rgb(0.0,1.0,0.0,1.0) , rgb(0.0,0.0,1.0,1.0), rgb(0.2,0.2,0.0,1.0), rgb(0.0,1.0,1.0,1.0), rgb(1.0,0.0,1.0,1.0), rgb(0.0,0.0,0.0,1.0) )
colors_in = c( rgb(1.0,0.0,0.0,0.05), rgb(0.0,1.0,0.0,0.05) , rgb(0.0,0.0,1.0,0.05),rgb(1.0,1.0,0.0,0.05), rgb(0.0,1.0,1.0,0.05) , rgb(1.0,0.0,1.0,0.05), rgb(0.0,0.0,0.0,0.05) )
radarchart(classRanks,axistype = 0,maxmin = T,pcol = colors_border,pfcol = colors_in,plwd = c(6,2,2,2,2,2,2),plty = 1, cglcol = "grey", cglty = 1,axislabcol = "black",cglwd = 0.8, vlcex  = 0.5 ,title = "Prediction Model")

legend("topleft",legend = rownames(classRanks[-c(1,2),]),bty = "n",pch = 20,col = colors_in,text.col = colors_border,cex = 0.5,pt.cex = 2)


filnames <- c("BSWiMS","LASSO","RF.ref","IDI","t-test","Kendall","mRMR")

filterRanks <- c(pr$minMaxMetrics$BER[1],pr$minMaxMetrics$ACC[2],pr$minMaxMetrics$AUC[2],pr$minMaxMetrics$SEN[2],pr$minMaxMetrics$SPE[2],max(cp$jaccard),min(cp$featsize));

filterRanks <- rbind(filterRanks,c(pr$minMaxMetrics$BER[2],0,0,0,0,min(cp$jaccard),max(cp$featsize)));

filterRanks <- as.data.frame(rbind(filterRanks,cbind(t(pr$metrics_filter[c("BER","ACC","AUC","SEN","SPE"),filnames]),cp$jaccard[filnames],cp$featsize[filnames])));
colnames(filterRanks) <- c("BER","ACC","AUC","SEN","SPE","Jaccard","SIZE")
filterRanks$BER <- -filterRanks$BER
filterRanks$SIZE <- -filterRanks$SIZE

colors_border = c( rgb(1.0,0.0,0.0,1.0), rgb(0.0,1.0,0.0,1.0) , rgb(0.0,0.0,1.0,1.0), rgb(0.2,0.2,0.0,1.0), rgb(0.0,1.0,1.0,1.0), rgb(1.0,0.0,1.0,1.0), rgb(0.0,0.0,0.0,1.0) )
colors_in = c( rgb(1.0,0.0,0.0,0.05), rgb(0.0,1.0,0.0,0.05) , rgb(0.0,0.0,1.0,0.05),rgb(1.0,1.0,0.0,0.05), rgb(0.0,1.0,1.0,0.05) , rgb(1.0,0.0,1.0,0.05), rgb(0.0,0.0,0.0,0.05) )
radarchart(filterRanks,axistype = 0,maxmin = T,pcol = colors_border,pfcol = colors_in,plwd = c(6,2,2,2,2,2,2),plty = 1, cglcol = "grey", cglty = 1,axislabcol = "black",cglwd = 0.8, vlcex  = 0.6,title = "Filter Method" )


legend("topleft",legend = rownames(filterRanks[-c(1,2),]),bty = "n",pch = 20,col = colors_in,text.col = colors_border,cex = 0.5,pt.cex = 2)


detach("package:fmsb", unload=TRUE)

par(mfrow = c(1,1))
par(op)

1.3.3 Feature Analysis



rm <- rowMeans(cp$featureSelectionFrequency)
selFrequency <- cp$featureSelectionFrequency[rm > 0.1,]
gplots::heatmap.2(selFrequency,trace = "none",mar = c(10,10),main = "Features",cexRow = 0.5)



topFeat <- min(ncol(BSWiMSMODEL$bagging$formulaNetwork),30);
gplots::heatmap.2(BSWiMSMODEL$bagging$formulaNetwork[1:topFeat,1:topFeat],trace="none",mar = c(10,10),main = "B:SWiMS Formula Network")

pander::pander(summary(BSWiMSMODEL$bagging$bagged.model,caption="Colon",round = 3))
  • coefficients:

    Table continues below
      Estimate lower OR upper u.Accuracy r.Accuracy
    V2804 0.001731 1.001 1.002 1.002 0.675 0.7113
    V2134 -0.0001151 0.9999 0.9999 0.9999 0.675 0.64
    V7976 0.0002679 1 1 1 0.595 0.695
    V8405 -0.0002958 0.9996 0.9997 0.9998 0.485 0.765
    V7856 0.0001637 1 1 1 0.675 0.745
    V7217 -7.409e-05 0.9999 0.9999 0.9999 0.67 0.725
    V3365 -0.002719 0.9965 0.9973 0.998 0.685 0.792
    V8685 -0.001581 0.998 0.9984 0.9989 0.56 0.7471
    V33 0.0002248 1 1 1 0.56 0.75
    V7136 0.0005582 1 1.001 1.001 0.565 0.795
    V2747 0.0002463 1 1 1 0.54 0.7233
    V6487 -0.000342 0.9996 0.9997 0.9998 0.5 0.83
    V7195 0.0002212 1 1 1 0.575 0.815
    V3725 0.0003455 1 1 1 0.605 0.7525
    V2294 0.001125 1.001 1.001 1.001 0.69 0.778
    V4070 0.0004281 1 1 1.001 0.69 0.7388
    V5417 -0.001072 0.9986 0.9989 0.9993 0.57 0.7406
    V9678 0.0003424 1 1 1 0.56 0.71
    V2556 0.001534 1.001 1.002 1.002 0.71 0.8012
    V9275 -0.003488 0.9953 0.9965 0.9977 0.565 0.7925
    V9215 -0.00316 0.9958 0.9968 0.9979 0.58 0.7889
    V9585 -0.003931 0.9948 0.9961 0.9974 0.685 0.7856
    V6408 0.0004817 1 1 1.001 0.565 0.8
    V8055 -0.002111 0.9972 0.9979 0.9986 0.55 0.7817
    V4414 -0.001526 0.998 0.9985 0.999 0.635 0.82
    V5 -0.0008247 0.9989 0.9992 0.9995 0.665 0.7158
    V6511 3.936e-05 1 1 1 0.635 0.72
    V2256 -0.001718 0.9977 0.9983 0.9989 0.585 0.7775
    V2297 0.0003623 1 1 1 0.53 0.83
    V6146 0.0004681 1 1 1.001 0.615 0.749
    V2242 0.0002177 1 1 1 0.58 0.825
    V872 -0.001849 0.9975 0.9982 0.9988 0.675 0.7629
    V5761 -0.001969 0.9973 0.998 0.9987 0.56 0.7645
    V6508 -0.0005087 0.9993 0.9995 0.9997 0.695 0.7825
    V6959 -0.001035 0.9986 0.999 0.9993 0.58 0.7769
    V5391 -0.0004055 0.9994 0.9996 0.9997 0.685 0.772
    V8156 -0.001637 0.9978 0.9984 0.999 0.58 0.7863
    V533 -0.002485 0.9966 0.9975 0.9984 0.67 0.7763
    V7272 -0.003809 0.9948 0.9962 0.9976 0.66 0.79
    V1967 -7.074e-05 0.9999 0.9999 1 0.69 0.77
    V9635 -0.001213 0.9983 0.9988 0.9992 0.495 0.7675
    V9965 -0.0007328 0.999 0.9993 0.9995 0.535 0.7486
    V7891 0.001116 1.001 1.001 1.002 0.685 0.7906
    V1142 0.0001568 1 1 1 0.56 0.77
    V8502 -0.001785 0.9976 0.9982 0.9989 0.665 0.765
    V7319 -0.001188 0.9984 0.9988 0.9993 0.48 0.7567
    V4584 -0.001676 0.9977 0.9983 0.9989 0.51 0.783
    V434 0.0008116 1.001 1.001 1.001 0.58 0.785
    V1787 -0.002176 0.997 0.9978 0.9986 0.685 0.7707
    V6594 0.0005537 1 1.001 1.001 0.665 0.8
    V9947 0.0007902 1 1.001 1.001 0.56 0.785
    V3557 -0.0003415 0.9995 0.9997 0.9998 0.695 0.7725
    V729 -0.001916 0.9974 0.9981 0.9988 0.57 0.8081
    V8517 0.000817 1.001 1.001 1.001 0.53 0.8025
    V3826 0.0001171 1 1 1 0.595 0.79
    V1975 -0.002527 0.9965 0.9975 0.9984 0.68 0.7922
    V4290 -0.0024 0.9967 0.9976 0.9985 0.665 0.7811
    V9395 -0.00499 0.9931 0.995 0.9969 0.555 0.8056
    V7748 -0.004433 0.9939 0.9956 0.9973 0.66 0.7955
    V9432 0.0001444 1 1 1 0.695 0.774
    V7928 -0.002296 0.9968 0.9977 0.9986 0.64 0.79
    V3222 -0.0008078 0.9989 0.9992 0.9995 0.565 0.8117
    V6958 -0.0005404 0.9992 0.9995 0.9997 0.55 0.8
    V5489 -2.66e-05 1 1 1 0.65 0.74
    V6163 -0.002178 0.997 0.9978 0.9987 0.49 0.7989
    V34 -0.001229 0.9983 0.9988 0.9993 0.57 0.7808
    V5801 0.0004546 1 1 1.001 0.705 0.7767
    V5400 -0.003018 0.9958 0.997 0.9982 0.635 0.7821
    V3082 -0.001001 0.9986 0.999 0.9994 0.64 0.82
    V5473 -0.001055 0.9985 0.9989 0.9994 0.665 0.755
    V7857 -0.004158 0.9942 0.9959 0.9975 0.675 0.7939
    V4194 -0.003791 0.9947 0.9962 0.9978 0.655 0.8106
    V7062 -0.0004498 0.9994 0.9996 0.9997 0.57 0.82
    V6584 -0.002064 0.9971 0.9979 0.9988 0.535 0.7939
    V5378 -0.001219 0.9983 0.9988 0.9993 0.505 0.777
    V4069 -0.001157 0.9984 0.9988 0.9993 0.585 0.7879
    V9818 -0.004235 0.994 0.9958 0.9975 0.57 0.8175
    V7513 -0.002074 0.9971 0.9979 0.9988 0.63 0.775
    V8245 0.0004198 1 1 1.001 0.58 0.8
    V3152 -0.0002194 0.9997 0.9998 0.9999 0.61 0.765
    V6121 0.002913 1.002 1.003 1.004 0.56 0.8017
    V782 -0.001775 0.9975 0.9982 0.999 0.695 0.7793
    V1451 0.0001727 1 1 1 0.555 0.81
    V9402 -5.874e-05 0.9999 0.9999 1 0.62 0.76
    V3339 -0.0002783 0.9996 0.9997 0.9998 0.635 0.785
    V6688 -0.00391 0.9945 0.9961 0.9977 0.555 0.8
    V8585 -0.000278 0.9996 0.9997 0.9998 0.68 0.7967
    V8972 -0.0002523 0.9996 0.9997 0.9999 0.58 0.8
    V2783 -0.0003039 0.9996 0.9997 0.9998 0.495 0.7417
    V1198 -0.0002973 0.9996 0.9997 0.9998 0.53 0.7625
    V6685 0.0009784 1.001 1.001 1.001 0.65 0.8367
    V6141 0.001125 1.001 1.001 1.002 0.56 0.81
    V86 -0.003706 0.9947 0.9963 0.9979 0.675 0.8022
    V6180 -0.0001023 0.9999 0.9999 0.9999 0.505 0.805
    V8267 -0.0002378 0.9997 0.9998 0.9999 0.66 0.73
    V9213 -0.003122 0.9955 0.9969 0.9982 0.56 0.769
    V6239 -0.001936 0.9972 0.9981 0.9989 0.655 0.8125
    V1046 -0.003657 0.9947 0.9963 0.998 0.56 0.7969
    V1943 -0.0005084 0.9993 0.9995 0.9997 0.55 0.83
    V7033 0.00126 1.001 1.001 1.002 0.56 0.795
    V6164 -0.0003667 0.9995 0.9996 0.9998 0.48 0.7675
    V4285 -0.0004476 0.9994 0.9996 0.9998 0.56 0.825
    V2515 -0.002237 0.9968 0.9978 0.9988 0.555 0.8075
    V3652 -0.0004469 0.9994 0.9996 0.9998 0.475 0.82
    V3206 -0.002835 0.9959 0.9972 0.9985 0.65 0.8069
    V819 -0.000173 0.9997 0.9998 0.9999 0.525 0.76
    V256 -0.002418 0.9965 0.9976 0.9987 0.505 0.8089
    V8193 -0.3104 0.636 0.7332 0.8451 0.56 0.805
    V5721 -0.00137 0.998 0.9986 0.9993 0.56 0.7883
    V3189 -0.0004502 0.9993 0.9995 0.9998 0.635 0.84
    V7220 -0.001782 0.9974 0.9982 0.999 0.68 0.7879
    V8038 -0.000609 0.9991 0.9994 0.9997 0.54 0.79
    V723 -0.00123 0.9982 0.9988 0.9993 0.65 0.8067
    V3545 0.0001813 1 1 1 0.59 0.7917
    V3161 0.002229 1.001 1.002 1.003 0.585 0.8211
    V1248 -0.002856 0.9958 0.9971 0.9985 0.58 0.8065
    V6780 -0.001004 0.9985 0.999 0.9995 0.55 0.8225
    V4017 -0.001817 0.9973 0.9982 0.999 0.56 0.8008
    V7302 0.001906 1.001 1.002 1.003 0.56 0.8117
    V2750 -0.001798 0.9974 0.9982 0.9991 0.56 0.8263
    V5005 0.0008678 1 1.001 1.001 0.695 0.8115
    V4406 -0.0003498 0.9995 0.9997 0.9998 0.59 0.7887
    V4554 0.0005107 1 1.001 1.001 0.665 0.8225
    V130 -0.00655 0.9904 0.9935 0.9966 0.56 0.8017
    V9329 -0.0004471 0.9993 0.9996 0.9998 0.47 0.795
    V4301 -0.003461 0.9949 0.9965 0.9982 0.56 0.7894
    V4185 -0.001098 0.9984 0.9989 0.9994 0.55 0.7783
    V9117 0.0003784 1 1 1.001 0.59 0.775
    V9031 0.0001496 1 1 1 0.605 0.7917
    V2438 -0.0006591 0.999 0.9993 0.9997 0.56 0.7867
    V1512 4.763e-05 1 1 1 0.655 0.79
    V311 0.0001537 1 1 1 0.54 0.795
    V3170 -0.007533 0.9888 0.9925 0.9962 0.56 0.825
    V5774 0.001076 1.001 1.001 1.002 0.59 0.8013
    V3125 0.0001505 1 1 1 0.63 0.845
    V762 0.0005802 1 1.001 1.001 0.59 0.7817
    V9070 -0.001411 0.9979 0.9986 0.9993 0.575 0.8212
    V3592 -0.000166 0.9998 0.9998 0.9999 0.57 0.775
    V9735 0.0001448 1 1 1 0.685 0.7817
    V4900 -0.0003899 0.9994 0.9996 0.9998 0.65 0.805
    V6111 -0.0001112 0.9998 0.9999 0.9999 0.54 0.785
    V4580 -0.001852 0.9972 0.9982 0.9991 0.56 0.791
    V3591 3.78e-05 1 1 1 0.625 0.78
    V7315 -0.002665 0.996 0.9973 0.9987 0.56 0.84
    V1184 -0.0008565 0.9987 0.9991 0.9996 0.555 0.798
    V7435 0.0001141 1 1 1 0.55 0.81
    V1936 0.000672 1 1.001 1.001 0.69 0.8131
    V1715 -6.636e-05 0.9999 0.9999 1 0.64 0.785
    V4198 -0.0007624 0.9988 0.9992 0.9996 0.635 0.8325
    V306 7.197e-05 1 1 1 0.61 0.805
    V2657 -0.0002251 0.9997 0.9998 0.9999 0.525 0.825
    V8650 0.0004814 1 1 1.001 0.6 0.82
    V188 -0.0003125 0.9995 0.9997 0.9999 0.56 0.755
    V1293 0.0004298 1 1 1.001 0.605 0.81
    V5148 -8.625e-05 0.9999 0.9999 1 0.615 0.835
    V4564 -0.002259 0.9965 0.9977 0.9989 0.56 0.8415
    V630 -0.0006414 0.999 0.9994 0.9997 0.56 0.765
    V6123 0.0004872 1 1 1.001 0.57 0.88
    V8428 -0.0002019 0.9997 0.9998 0.9999 0.56 0.8
    V5321 -0.006559 0.99 0.9935 0.997 0.56 0.828
    V7446 5.311e-05 1 1 1 0.555 0.8
    V1336 0.0001589 1 1 1 0.54 0.8225
    V662 -0.0008147 0.9987 0.9992 0.9996 0.65 0.7983
    V2358 0.00127 1.001 1.001 1.002 0.585 0.7931
    V8611 0.0005966 1 1.001 1.001 0.565 0.86
    V7402 -0.0007037 0.9989 0.9993 0.9997 0.56 0.7883
    V4738 -0.0002374 0.9996 0.9998 0.9999 0.56 0.82
    V9704 -0.0003618 0.9994 0.9996 0.9998 0.56 0.8425
    V4352 -0.003316 0.9949 0.9967 0.9985 0.62 0.83
    V5672 0.001928 1.001 1.002 1.003 0.595 0.8181
    V3708 -0.000139 0.9998 0.9999 0.9999 0.54 0.775
    V2597 -0.05887 0.9117 0.9428 0.975 0.56 0.795
    V2856 -0.0008149 0.9987 0.9992 0.9997 0.56 0.8575
    V3271 0.0003543 1 1 1.001 0.56 0.775
    V8749 -0.0002151 0.9997 0.9998 0.9999 0.56 0.79
    V7899 -0.0006421 0.999 0.9994 0.9997 0.595 0.825
    V1202 0.0003698 1 1 1.001 0.57 0.825
    V5995 0.0001477 1 1 1 0.6 0.815
    V1529 -0.0003031 0.9995 0.9997 0.9999 0.615 0.8
    Table continues below
      full.Accuracy u.AUC r.AUC full.AUC IDI NRI
    V2804 0.8437 0.6636 0.7121 0.8431 0.2765 1.065
    V2134 0.78 0.6879 0.6664 0.789 0.2488 1.023
    V7976 0.835 0.5751 0.6978 0.8369 0.2193 0.7792
    V8405 0.855 0.4598 0.7634 0.8523 0.2061 0.8442
    V7856 0.835 0.6745 0.7419 0.832 0.2267 1.008
    V7217 0.805 0.6834 0.7155 0.804 0.2023 0.8929
    V3365 0.866 0.6859 0.7912 0.8659 0.1882 1.088
    V8685 0.8414 0.5 0.7509 0.841 0.1946 0.9281
    V33 0.835 0.5 0.7415 0.832 0.184 1.114
    V7136 0.8675 0.5276 0.7938 0.8683 0.165 0.9497
    V2747 0.8167 0.5114 0.727 0.8168 0.1698 0.9637
    V6487 0.895 0.472 0.8324 0.8965 0.1395 1.054
    V7195 0.86 0.5633 0.8105 0.858 0.132 0.862
    V3725 0.8237 0.5913 0.7437 0.8232 0.1411 0.6506
    V2294 0.848 0.6843 0.7784 0.8475 0.1385 1.006
    V4070 0.8287 0.683 0.7354 0.8291 0.1465 0.8929
    V5417 0.8162 0.5613 0.7435 0.8169 0.1448 0.5913
    V9678 0.78 0.5 0.7155 0.789 0.1561 0.4448
    V2556 0.8669 0.7045 0.7999 0.8647 0.1268 0.9314
    V9275 0.8445 0.5678 0.7943 0.8442 0.1353 0.8542
    V9215 0.8456 0.586 0.7884 0.8463 0.1362 0.8784
    V9585 0.8433 0.7041 0.7858 0.8447 0.1251 0.9509
    V6408 0.845 0.5227 0.8044 0.8458 0.0979 1.008
    V8055 0.8422 0.5361 0.7794 0.8418 0.1403 0.6861
    V4414 0.895 0.6619 0.8222 0.8965 0.1287 1.062
    V5 0.8042 0.6838 0.715 0.8065 0.1153 0.6891
    V6511 0.8 0.6193 0.7123 0.7983 0.1313 0.5438
    V2256 0.8312 0.5905 0.7779 0.8323 0.1262 0.7837
    V2297 0.905 0.4781 0.8287 0.9054 0.1019 0.8214
    V6146 0.828 0.599 0.7459 0.8274 0.1243 0.6445
    V2242 0.86 0.5593 0.8243 0.858 0.1321 0.7386
    V872 0.8136 0.6952 0.7648 0.8156 0.1146 0.8822
    V5761 0.8325 0.5499 0.7657 0.8338 0.1278 0.5852
    V6508 0.8325 0.7045 0.7827 0.8328 0.1209 0.8247
    V6959 0.83 0.569 0.7783 0.829 0.1325 0.817
    V5391 0.812 0.6956 0.7709 0.8131 0.1249 0.7453
    V8156 0.84 0.586 0.785 0.8386 0.1212 0.7094
    V533 0.8162 0.6907 0.7765 0.8177 0.1145 0.972
    V7272 0.83 0.683 0.79 0.832 0.1081 1.005
    V1967 0.81 0.6964 0.7703 0.8084 0.125 0.862
    V9635 0.825 0.47 0.7684 0.8264 0.1268 0.6613
    V9965 0.8064 0.5373 0.7492 0.8063 0.1188 0.6521
    V7891 0.8422 0.6871 0.792 0.8417 0.1243 0.8959
    V1142 0.835 0.5 0.7691 0.8369 0.1041 0.4951
    V8502 0.825 0.6692 0.764 0.8246 0.117 0.7936
    V7319 0.8242 0.4554 0.76 0.8262 0.1135 0.6974
    V4584 0.8415 0.4968 0.7849 0.8431 0.1167 0.8314
    V434 0.84 0.5373 0.78 0.8389 0.1161 1.073
    V1787 0.8164 0.7041 0.7715 0.8175 0.1032 0.7195
    V6594 0.8375 0.6656 0.8056 0.8385 0.119 0.8547
    V9947 0.85 0.5 0.7812 0.849 0.1127 0.6867
    V3557 0.8313 0.7021 0.7701 0.8305 0.1144 0.804
    V729 0.8644 0.5625 0.8075 0.8637 0.1154 0.8559
    V8517 0.8367 0.4927 0.8062 0.8357 0.1141 0.8157
    V3826 0.835 0.5775 0.7796 0.832 0.1108 0.7711
    V1975 0.8378 0.6997 0.7911 0.8393 0.09847 0.7691
    V4290 0.8356 0.6692 0.7798 0.8357 0.1062 0.917
    V9395 0.8633 0.5722 0.8058 0.8623 0.106 0.8323
    V7748 0.855 0.6684 0.794 0.8553 0.1094 1.034
    V9432 0.816 0.6912 0.7739 0.8157 0.1065 0.6958
    V7928 0.84 0.664 0.7902 0.8409 0.09316 0.8723
    V3222 0.835 0.569 0.8176 0.8373 0.1014 0.7167
    V6958 0.88 0.558 0.8007 0.877 0.09668 0.8636
    V5489 0.81 0.6388 0.7374 0.8097 0.1013 0.8052
    V6163 0.8411 0.4752 0.7987 0.8414 0.1047 0.8405
    V34 0.8317 0.5674 0.781 0.8312 0.1068 0.6358
    V5801 0.8289 0.7062 0.775 0.8286 0.1029 0.7527
    V5400 0.82 0.6607 0.7836 0.8217 0.08791 0.817
    V3082 0.845 0.6445 0.8222 0.8446 0.1018 1.039
    V5473 0.8207 0.668 0.7529 0.8197 0.09776 0.8676
    V7857 0.855 0.683 0.7937 0.8551 0.09351 0.9102
    V4194 0.8467 0.6798 0.8115 0.8489 0.09143 0.9817
    V7062 0.86 0.5625 0.8174 0.8616 0.1022 0.7565
    V6584 0.8394 0.5325 0.7961 0.8397 0.09806 0.6804
    V5378 0.82 0.4911 0.7785 0.8193 0.09894 0.649
    V4069 0.8357 0.5905 0.7906 0.8364 0.09602 0.6484
    V9818 0.865 0.5747 0.8167 0.8656 0.0971 0.8281
    V7513 0.8163 0.655 0.7745 0.818 0.08366 0.8271
    V8245 0.85 0.5507 0.7983 0.849 0.08513 0.8263
    V3152 0.795 0.6481 0.7658 0.7987 0.07757 0.7662
    V6121 0.8267 0.5 0.8059 0.8278 0.1054 0.8582
    V782 0.8207 0.7143 0.7808 0.8229 0.08893 0.816
    V1451 0.88 0.5101 0.8084 0.8807 0.07435 0.7873
    V9402 0.81 0.6059 0.7638 0.8097 0.08419 0.6055
    V3339 0.835 0.6644 0.78 0.8332 0.08901 0.8003
    V6688 0.8465 0.5722 0.8002 0.8455 0.09174 0.6794
    V8585 0.8183 0.6912 0.7953 0.8167 0.09872 0.6818
    V8972 0.85 0.558 0.7971 0.849 0.07835 0.7646
    V2783 0.8067 0.4846 0.7417 0.8067 0.08785 0.5758
    V1198 0.8175 0.5207 0.7642 0.8176 0.08443 0.6055
    V6685 0.8667 0.6425 0.8363 0.8676 0.09109 0.7668
    V6141 0.85 0.5 0.817 0.8539 0.09448 0.9026
    V86 0.8478 0.683 0.8008 0.848 0.08562 0.8604
    V6180 0.815 0.4789 0.8052 0.8153 0.08739 0.6688
    V8267 0.7825 0.6794 0.7334 0.7869 0.07351 0.7606
    V9213 0.817 0.5 0.7713 0.8186 0.06388 0.7045
    V6239 0.8408 0.6774 0.8107 0.8404 0.0813 0.8704
    V1046 0.825 0.5 0.7998 0.827 0.06806 0.6998
    V1943 0.86 0.5666 0.83 0.858 0.07337 0.4026
    V7033 0.84 0.5 0.795 0.8407 0.09396 0.9383
    V6164 0.8175 0.4785 0.7687 0.8157 0.07855 0.3141
    V4285 0.87 0.5 0.8255 0.8718 0.05261 0.2646
    V2515 0.8433 0.5686 0.8084 0.8433 0.08014 0.6426
    V3652 0.86 0.446 0.8186 0.8616 0.08252 0.4935
    V3206 0.8375 0.6741 0.8067 0.8386 0.07807 0.8689
    V819 0.8025 0.5211 0.7608 0.8048 0.07987 0.4326
    V256 0.8422 0.4935 0.8103 0.8426 0.08274 0.6263
    V8193 0.83 0.5 0.8109 0.8344 0.06928 0.9037
    V5721 0.8133 0.5 0.7915 0.8163 0.07376 0.7332
    V3189 0.875 0.6388 0.8401 0.875 0.07794 0.9578
    V7220 0.8243 0.6887 0.7866 0.8236 0.07111 0.7347
    V8038 0.815 0.5491 0.7918 0.8147 0.07941 0.75
    V723 0.8317 0.6729 0.8022 0.8314 0.06866 0.7446
    V3545 0.8233 0.5694 0.7969 0.824 0.07315 0.5471
    V3161 0.8644 0.5601 0.8203 0.8637 0.09108 0.7738
    V1248 0.848 0.5946 0.8076 0.8488 0.07748 0.5222
    V6780 0.8625 0.5653 0.8239 0.8644 0.07341 0.6193
    V4017 0.8333 0.5 0.8013 0.8327 0.08015 0.6521
    V7302 0.8317 0.5 0.8148 0.8367 0.08563 0.6778
    V2750 0.845 0.5 0.8251 0.8446 0.0729 0.6818
    V5005 0.85 0.696 0.8105 0.8509 0.07523 0.7638
    V4406 0.8425 0.5816 0.7904 0.842 0.07207 0.5544
    V4554 0.855 0.6607 0.8214 0.8535 0.0687 0.6031
    V130 0.8317 0.5 0.803 0.8329 0.05331 0.7006
    V9329 0.845 0.4489 0.7975 0.8446 0.06619 0.5901
    V4301 0.8206 0.5 0.7923 0.8228 0.0554 0.5422
    V4185 0.8275 0.5666 0.7794 0.8281 0.06949 0.5146
    V9117 0.815 0.5487 0.7735 0.8141 0.07214 0.5925
    V9031 0.8317 0.5864 0.7909 0.8314 0.07009 0.5227
    V2438 0.8267 0.5718 0.7884 0.8262 0.04978 0.3111
    V1512 0.805 0.6384 0.7979 0.8088 0.07687 0.5471
    V311 0.8317 0.5126 0.8011 0.8331 0.06349 0.4957
    V3170 0.8528 0.5 0.8248 0.8533 0.04999 0.699
    V5774 0.8287 0.5548 0.8031 0.8273 0.08117 0.3742
    V3125 0.875 0.5893 0.8433 0.875 0.06658 0.6851
    V762 0.8117 0.5548 0.7856 0.812 0.07672 0.4416
    V9070 0.845 0.5864 0.8212 0.8433 0.05857 0.5804
    V3592 0.82 0.5832 0.7821 0.8247 0.06189 0.5284
    V9735 0.8108 0.6847 0.7813 0.8094 0.06037 0.5939
    V4900 0.825 0.6534 0.8082 0.8237 0.06958 0.8101
    V6111 0.805 0.554 0.7849 0.8015 0.06269 0.4205
    V4580 0.815 0.5 0.7917 0.8163 0.05587 0.6821
    V3591 0.825 0.6067 0.778 0.8267 0.07208 0.4789
    V7315 0.855 0.5 0.8364 0.8523 0.05135 1.01
    V1184 0.8375 0.5199 0.8002 0.8387 0.05713 0.6221
    V7435 0.85 0.5142 0.806 0.8478 0.05891 0.526
    V1936 0.84 0.6818 0.8146 0.8406 0.0709 0.6707
    V1715 0.83 0.6335 0.7812 0.8263 0.05182 0.7127
    V4198 0.8375 0.6437 0.834 0.8379 0.06831 0.8515
    V306 0.825 0.5921 0.8088 0.8304 0.06751 0.5958
    V2657 0.85 0.4785 0.8316 0.849 0.06131 0.7938
    V8650 0.8525 0.5686 0.821 0.8531 0.06078 0.5584
    V188 0.79 0.5 0.7593 0.7918 0.05803 0.7857
    V1293 0.855 0.556 0.8097 0.8559 0.05516 0.8003
    V5148 0.85 0.6027 0.8356 0.8478 0.05354 0.7175
    V4564 0.871 0.5 0.8406 0.8697 0.05402 0.5823
    V630 0.8 0.5 0.7622 0.7983 0.05273 0.9302
    V6123 0.905 0.5235 0.8795 0.9054 0.04677 0.7825
    V8428 0.8217 0.5 0.806 0.8233 0.05404 0.5244
    V5321 0.8515 0.5 0.8288 0.8511 0.05899 0.8244
    V7446 0.845 0.5296 0.8007 0.8446 0.05159 0.237
    V1336 0.835 0.4882 0.8245 0.8362 0.04044 0.3328
    V662 0.8117 0.6607 0.8013 0.8132 0.06277 0.8122
    V2358 0.8369 0.5588 0.7922 0.8349 0.05944 0.6045
    V8611 0.89 0.5751 0.858 0.886 0.04615 0.5455
    V7402 0.81 0.5 0.7936 0.8137 0.0543 0.7476
    V4738 0.85 0.5 0.8186 0.8478 0.05658 0.9497
    V9704 0.8575 0.5 0.8423 0.8569 0.04287 0.418
    V4352 0.8605 0.6266 0.8302 0.8607 0.0563 0.8571
    V5672 0.85 0.5629 0.8178 0.8489 0.05895 0.4625
    V3708 0.83 0.554 0.7772 0.8312 0.04545 0.3734
    V2597 0.83 0.5 0.8024 0.8373 0.04677 0.6737
    V2856 0.87 0.5 0.8557 0.8705 0.04507 0.7054
    V3271 0.805 0.5 0.7784 0.8088 0.06241 0.6218
    V8749 0.825 0.5 0.7869 0.8243 0.04254 0.2354
    V7899 0.845 0.6347 0.8279 0.8458 0.04885 0.8539
    V1202 0.87 0.5223 0.8218 0.8718 0.04967 0.5049
    V5995 0.83 0.5637 0.8129 0.8275 0.0459 0.3247
    V1529 0.83 0.6526 0.7971 0.8312 0.02992 0.6396
      z.IDI z.NRI Frequency
    V2804 8.653 9.036 0.4
    V2134 8.496 8.988 0.1
    V7976 7.633 6.311 0.2
    V8405 7.577 6.619 0.1
    V7856 7.478 8.175 0.1
    V7217 7.267 7.043 0.1
    V3365 7.011 9.483 1
    V8685 7.003 7.49 0.7
    V33 6.781 9.486 0.1
    V7136 6.547 7.747 0.2
    V2747 6.524 7.818 0.3
    V6487 6.23 9.213 0.1
    V7195 6.114 6.781 0.1
    V3725 6.056 4.879 0.4
    V2294 6.011 8.291 0.5
    V4070 5.972 7.096 0.4
    V5417 5.947 4.439 0.8
    V9678 5.946 3.834 0.1
    V2556 5.874 7.737 0.8
    V9275 5.823 6.873 1
    V9215 5.823 7.214 0.9
    V9585 5.803 8.085 0.9
    V6408 5.778 8.175 0.1
    V8055 5.773 5.188 0.9
    V4414 5.729 9.133 0.1
    V5 5.701 5.543 0.6
    V6511 5.692 3.967 0.1
    V2256 5.641 6.343 0.8
    V2297 5.628 6.363 0.1
    V6146 5.611 4.936 0.5
    V2242 5.586 5.578 0.1
    V872 5.523 7.541 0.7
    V5761 5.521 4.414 1
    V6508 5.521 6.561 0.4
    V6959 5.45 6.432 0.8
    V5391 5.443 5.869 0.5
    V8156 5.425 5.727 0.8
    V533 5.358 8.432 0.4
    V7272 5.35 9.055 0.9
    V1967 5.347 6.781 0.1
    V9635 5.344 5.015 0.4
    V9965 5.329 5.209 0.7
    V7891 5.309 7.161 0.9
    V1142 5.303 3.702 0.1
    V8502 5.267 6.366 0.8
    V7319 5.262 5.526 0.6
    V4584 5.252 6.623 1
    V434 5.248 9.009 0.1
    V1787 5.242 5.893 0.7
    V6594 5.229 6.73 0.4
    V9947 5.213 5.155 0.1
    V3557 5.185 6.295 0.4
    V729 5.175 6.859 0.8
    V8517 5.166 6.425 0.6
    V3826 5.154 5.889 0.1
    V1975 5.124 6.396 0.9
    V4290 5.115 7.502 0.9
    V9395 5.081 6.793 0.9
    V7748 5.079 8.795 1
    V9432 5.077 5.288 0.5
    V7928 5.008 7.762 0.3
    V3222 4.981 5.713 0.3
    V6958 4.973 6.947 0.1
    V5489 4.92 6.383 0.1
    V6163 4.908 6.833 0.9
    V34 4.907 4.81 0.6
    V5801 4.896 5.836 0.9
    V5400 4.87 7.22 0.7
    V3082 4.848 8.967 0.2
    V5473 4.845 6.955 0.7
    V7857 4.832 7.445 0.9
    V4194 4.814 8.622 0.9
    V7062 4.792 5.733 0.1
    V6584 4.785 5.19 0.9
    V5378 4.782 5.229 0.5
    V4069 4.779 5.052 0.7
    V9818 4.767 6.597 1
    V7513 4.738 7.163 0.4
    V8245 4.735 6.402 0.2
    V3152 4.719 7.401 0.1
    V6121 4.704 6.942 0.3
    V782 4.698 6.981 0.7
    V1451 4.697 6.005 0.1
    V9402 4.696 4.508 0.1
    V3339 4.688 7.107 0.1
    V6688 4.682 5.427 1
    V8585 4.584 5.193 0.3
    V8972 4.578 5.803 0.1
    V2783 4.538 4.377 0.3
    V1198 4.534 4.515 0.2
    V6685 4.521 6.04 0.3
    V6141 4.509 7.134 0.1
    V86 4.502 6.958 0.9
    V6180 4.502 5.051 0.1
    V8267 4.48 6.186 0.2
    V9213 4.475 6.92 0.5
    V6239 4.44 7.639 0.6
    V1046 4.438 6.139 0.8
    V1943 4.416 3.113 0.1
    V7033 4.408 7.459 0.2
    V6164 4.367 2.366 0.2
    V4285 4.364 2.105 0.1
    V2515 4.349 5.133 0.6
    V3652 4.34 3.629 0.1
    V3206 4.329 7.499 0.8
    V819 4.311 3.432 0.2
    V256 4.288 4.754 0.9
    V8193 4.28 8.357 0.3
    V5721 4.254 6.151 0.3
    V3189 4.24 7.882 0.1
    V7220 4.23 5.779 0.7
    V8038 4.228 5.99 0.2
    V723 4.226 6.45 0.3
    V3545 4.217 4.065 0.3
    V3161 4.212 5.968 0.9
    V1248 4.206 4.152 1
    V6780 4.176 4.793 0.2
    V4017 4.167 5.017 0.6
    V7302 4.149 5.384 0.3
    V2750 4.148 5.141 0.4
    V5005 4.144 5.935 1
    V4406 4.122 4.245 0.4
    V4554 4.116 4.449 0.2
    V130 4.093 6.903 0.6
    V9329 4.081 4.423 0.2
    V4301 4.078 4.94 0.8
    V4185 4.065 4.053 0.6
    V9117 4.041 4.635 0.1
    V9031 4.018 3.854 0.3
    V2438 3.989 2.491 0.3
    V1512 3.972 4.014 0.1
    V311 3.956 3.644 0.3
    V3170 3.955 6.884 0.9
    V5774 3.949 2.85 0.4
    V3125 3.93 5.219 0.1
    V762 3.914 3.367 0.3
    V9070 3.912 4.621 0.4
    V3592 3.907 4.324 0.1
    V9735 3.889 4.481 0.6
    V4900 3.885 6.484 0.2
    V6111 3.881 3.247 0.1
    V4580 3.875 5.75 0.5
    V3591 3.869 3.499 0.1
    V7315 3.829 8.963 0.1
    V1184 3.821 4.986 1
    V7435 3.787 3.826 0.1
    V1936 3.768 5.037 0.8
    V1715 3.751 5.377 0.1
    V4198 3.75 7.022 0.2
    V306 3.743 4.432 0.1
    V2657 3.724 6.103 0.1
    V8650 3.723 4.102 0.2
    V188 3.713 6.667 0.1
    V1293 3.707 6.438 0.1
    V5148 3.692 5.433 0.1
    V4564 3.669 4.626 1
    V630 3.669 8.427 0.1
    V6123 3.668 6.248 0.1
    V8428 3.648 3.92 0.3
    V5321 3.638 6.985 1
    V7446 3.633 1.681 0.1
    V1336 3.626 2.373 0.2
    V662 3.607 6.847 0.3
    V2358 3.603 4.488 0.8
    V8611 3.592 3.984 0.1
    V7402 3.573 6.598 0.3
    V4738 3.572 7.923 0.1
    V9704 3.53 3.215 0.2
    V4352 3.526 7.023 1
    V5672 3.479 3.449 0.8
    V3708 3.443 3.087 0.1
    V2597 3.436 7.258 0.1
    V2856 3.39 5.645 0.2
    V3271 3.325 4.7 0.1
    V8749 3.311 1.763 0.1
    V7899 3.242 7.585 0.1
    V1202 3.14 4.133 0.1
    V5995 2.841 2.612 0.1
    V1529 2.671 5.744 0.1
  • Accuracy: 0.925
  • tAUC: 0.9269
  • sensitivity: 0.9432
  • specificity: 0.9107
  • bootstrap:



hm <- heatMaps(Outcome = theOutcome,data = theData[,c(theOutcome,rownames(selFrequency))],title = "Heat Map",Scale = TRUE,hCluster = "col",cexRow = 0.25,cexCol = 0.75,srtCol = 45)


vlist <- rownames(selFrequency)
vlist <- cbind(vlist,vlist)
univ <- univariateRankVariables(variableList = vlist,formula = paste(theOutcome,"~1"),Outcome = theOutcome,data = theData,type = "LOGIT",rankingTest = "zIDI",uniType = "Binary")[,c("controlMean","controlStd","caseMean","caseStd","ROCAUC","WilcoxRes.p")] 

cnames <- colnames(univ);
univ <- cbind(univ,rm[rownames(univ)])
colnames(univ) <- c(cnames,"Frequency")
univ <- univ[order(-univ[,5]),]
pander::pander(univ[1:topFeat,],caption = "Features",round = 4)
Features (continued below)
  controlMean controlStd caseMean caseStd ROCAUC
V5005 239.3 83.62 314.7 72.85 0.772
V312 121.6 94.73 47.18 48.01 0.7499
V1936 243.1 79.21 316 79.48 0.748
V2556 255.3 92.59 324.8 64.88 0.7475
V9735 377.8 135 484 95.31 0.7453
V5801 385 144.3 503.2 107 0.7443
V7891 233.4 94.59 307.9 70.05 0.7441
V4070 234.6 95.72 311.7 81.57 0.7383
V6594 210.4 98.05 288.8 76.94 0.7377
V2640 221.1 182.6 358 204.6 0.7359
V5 26.58 30.65 4.932 14.67 0.734
V5802 370.1 128.1 463.9 93.28 0.7323
V1476 31.02 28.2 8.773 16.77 0.7307
V4290 36.72 31.4 12.12 20.9 0.7294
V7748 32.71 29.2 9.5 17.81 0.7284
V698 34.61 30.34 10.58 19.17 0.7281
V1975 26.74 30.6 4.716 14.5 0.7274
V471 114.8 113.9 213.1 128.8 0.7273
V533 25.49 31.11 4.33 14.07 0.7273
V2294 276.6 92.11 338.8 62.78 0.7254
V436 29.61 27.29 8.352 16.02 0.7252
V4973 28.23 32.2 4.75 14.45 0.7237
V1400 256 124.4 377.1 166.8 0.7226
V5473 41.37 33.29 16.44 25.3 0.7225
V86 28.55 26.42 8.114 15.47 0.7206
V2644 238.2 135.1 346.1 113.9 0.7203
V3629 222 125.3 348.8 172 0.7197
V7734 246.9 125.5 342.7 110.9 0.7188
V7655 35.48 30.77 13.34 20.64 0.718
V7857 27.68 25.6 7.989 15.11 0.7178
  WilcoxRes.p Frequency
V5005 0 0.6267
V312 0 0.28
V1936 0 0.4867
V2556 0 0.4567
V9735 0 0.3167
V5801 0 0.1833
V7891 0 0.2
V4070 0 0.47
V6594 0 0.1033
V2640 0 0.13
V5 0 0.2833
V5802 0 0.1767
V1476 0 0.1167
V4290 0 0.1433
V7748 0 0.16
V698 0 0.1867
V1975 0 0.1533
V471 0 0.11
V533 0 0.1633
V2294 0 0.26
V436 0 0.1033
V4973 0 0.1267
V1400 0 0.2433
V5473 0 0.1233
V86 0 0.3267
V2644 0 0.1333
V3629 0 0.1833
V7734 0 0.1133
V7655 0 0.1333
V7857 0 0.1367