Radar Plots
op <- par(no.readonly = TRUE)
library(fmsb)
par(mfrow = c(1,2),xpd = TRUE,pty = "s",mar = c(1,1,1,1))
mNames <- names(cp$cpuElapsedTimes)
classRanks <- c(pr$minMaxMetrics$BER[1],pr$minMaxMetrics$ACC[2],pr$minMaxMetrics$AUC[2],pr$minMaxMetrics$SEN[2],pr$minMaxMetrics$SPE[2],min(cp$cpuElapsedTimes))
classRanks <- rbind(classRanks,c(pr$minMaxMetrics$BER[2],0,0,0,0,max(cp$cpuElapsedTimes)))
classRanks <- as.data.frame(rbind(classRanks,cbind(t(pr$metrics[c("BER","ACC","AUC","SEN","SPE"),mNames]),cp$cpuElapsedTimes)))
colnames(classRanks) <- c("BER","ACC","AUC","SEN","SPE","CPU")
classRanks$BER <- -classRanks$BER
classRanks$CPU <- -classRanks$CPU
colors_border = c( rgb(1.0,0.0,0.0,1.0), rgb(0.0,1.0,0.0,1.0) , rgb(0.0,0.0,1.0,1.0), rgb(0.2,0.2,0.0,1.0), rgb(0.0,1.0,1.0,1.0), rgb(1.0,0.0,1.0,1.0), rgb(0.0,0.0,0.0,1.0) )
colors_in = c( rgb(1.0,0.0,0.0,0.05), rgb(0.0,1.0,0.0,0.05) , rgb(0.0,0.0,1.0,0.05),rgb(1.0,1.0,0.0,0.05), rgb(0.0,1.0,1.0,0.05) , rgb(1.0,0.0,1.0,0.05), rgb(0.0,0.0,0.0,0.05) )
radarchart(classRanks,axistype = 0,maxmin = T,pcol = colors_border,pfcol = colors_in,plwd = c(6,2,2,2,2,2,2),plty = 1, cglcol = "grey", cglty = 1,axislabcol = "black",cglwd = 0.8, vlcex = 0.5 ,title = "Prediction Model")
legend("topleft",legend = rownames(classRanks[-c(1,2),]),bty = "n",pch = 20,col = colors_in,text.col = colors_border,cex = 0.5,pt.cex = 2)
filnames <- c("BSWiMS","LASSO","RF.ref","IDI","t-test","Kendall","mRMR")
filterRanks <- c(pr$minMaxMetrics$BER[1],pr$minMaxMetrics$ACC[2],pr$minMaxMetrics$AUC[2],pr$minMaxMetrics$SEN[2],pr$minMaxMetrics$SPE[2],max(cp$jaccard),min(cp$featsize));
filterRanks <- rbind(filterRanks,c(pr$minMaxMetrics$BER[2],0,0,0,0,min(cp$jaccard),max(cp$featsize)));
filterRanks <- as.data.frame(rbind(filterRanks,cbind(t(pr$metrics_filter[c("BER","ACC","AUC","SEN","SPE"),filnames]),cp$jaccard[filnames],cp$featsize[filnames])));
colnames(filterRanks) <- c("BER","ACC","AUC","SEN","SPE","Jaccard","SIZE")
filterRanks$BER <- -filterRanks$BER
filterRanks$SIZE <- -filterRanks$SIZE
colors_border = c( rgb(1.0,0.0,0.0,1.0), rgb(0.0,1.0,0.0,1.0) , rgb(0.0,0.0,1.0,1.0), rgb(0.2,0.2,0.0,1.0), rgb(0.0,1.0,1.0,1.0), rgb(1.0,0.0,1.0,1.0), rgb(0.0,0.0,0.0,1.0) )
colors_in = c( rgb(1.0,0.0,0.0,0.05), rgb(0.0,1.0,0.0,0.05) , rgb(0.0,0.0,1.0,0.05),rgb(1.0,1.0,0.0,0.05), rgb(0.0,1.0,1.0,0.05) , rgb(1.0,0.0,1.0,0.05), rgb(0.0,0.0,0.0,0.05) )
radarchart(filterRanks,axistype = 0,maxmin = T,pcol = colors_border,pfcol = colors_in,plwd = c(6,2,2,2,2,2,2),plty = 1, cglcol = "grey", cglty = 1,axislabcol = "black",cglwd = 0.8, vlcex = 0.6,title = "Filter Method" )
legend("topleft",legend = rownames(filterRanks[-c(1,2),]),bty = "n",pch = 20,col = colors_in,text.col = colors_border,cex = 0.5,pt.cex = 2)

detach("package:fmsb", unload=TRUE)
par(mfrow = c(1,1))
par(op)
Feature Analysis
rm <- rowMeans(cp$featureSelectionFrequency)
selFrequency <- cp$featureSelectionFrequency[rm > 0.1,]
gplots::heatmap.2(selFrequency,trace = "none",mar = c(10,10),main = "Features",cexRow = 0.5)

topFeat <- min(ncol(BSWiMSMODEL$bagging$formulaNetwork),30);
gplots::heatmap.2(BSWiMSMODEL$bagging$formulaNetwork[1:topFeat,1:topFeat],trace="none",mar = c(10,10),main = "B:SWiMS Formula Network")

pander::pander(summary(BSWiMSMODEL$bagging$bagged.model,caption="Colon",round = 3))
coefficients:
Table continues below
| U28386_at |
0.09328 |
1.087 |
1.098 |
1.108 |
0.8197 |
| D55716_at |
0.0003205 |
1 |
1 |
1 |
0.8618 |
| X02152_at |
2.333e-05 |
1 |
1 |
1 |
0.8719 |
| HG4074.HT4344_at |
0.0002645 |
1 |
1 |
1 |
0.8495 |
| HG1980.HT2023_at |
0.00272 |
1.002 |
1.003 |
1.003 |
0.8334 |
| M63835_at |
0.1114 |
1.101 |
1.118 |
1.135 |
0.8471 |
| M63138_at |
0.01215 |
1.01 |
1.012 |
1.014 |
0.825 |
| X01060_at |
0.003381 |
1.003 |
1.003 |
1.004 |
0.8033 |
| X56494_at |
0.002457 |
1.002 |
1.002 |
1.003 |
0.8338 |
| D82348_at |
0.00542 |
1.005 |
1.005 |
1.006 |
0.8313 |
| M14328_s_at |
1.572e-05 |
1 |
1 |
1 |
0.8308 |
| X17620_at |
0.0001138 |
1 |
1 |
1 |
0.827 |
| J03909_at |
7.186e-05 |
1 |
1 |
1 |
0.8366 |
| M57710_at |
0.000157 |
1 |
1 |
1 |
0.8044 |
| U14518_at |
0.1204 |
1.107 |
1.128 |
1.15 |
0.8259 |
| D79997_at |
0.000536 |
1 |
1.001 |
1.001 |
0.7994 |
| L17131_rna1_at |
1.81e-05 |
1 |
1 |
1 |
0.8043 |
| M13792_at |
6.623e-05 |
1 |
1 |
1 |
0.809 |
| X16396_at |
0.005733 |
1.005 |
1.006 |
1.007 |
0.8017 |
| M20471_at |
9.661e-06 |
1 |
1 |
1 |
0.7709 |
| X62078_at |
7.913e-05 |
1 |
1 |
1 |
0.7973 |
| L25876_at |
0.02112 |
1.017 |
1.021 |
1.025 |
0.7684 |
| L33842_rna1_at |
0.0001454 |
1 |
1 |
1 |
0.803 |
| HG417.HT417_s_at |
1.874e-05 |
1 |
1 |
1 |
0.7788 |
| M60830_at |
-0.1237 |
0.8611 |
0.8836 |
0.9068 |
0.6141 |
| U72342_at |
-0.01106 |
0.9864 |
0.989 |
0.9916 |
0.6166 |
| V00594_s_at |
1.017e-05 |
1 |
1 |
1 |
0.788 |
| U46006_s_at |
-0.02968 |
0.9636 |
0.9708 |
0.978 |
0.7854 |
| M94880_f_at |
-0.007183 |
0.991 |
0.9928 |
0.9946 |
0.6853 |
| D78134_at |
-0.01851 |
0.9771 |
0.9817 |
0.9863 |
0.7751 |
| Z21966_at |
-0.07024 |
0.9154 |
0.9322 |
0.9492 |
0.8291 |
| X16983_at |
-0.03717 |
0.954 |
0.9635 |
0.9731 |
0.7912 |
| Z35227_at |
-0.002803 |
0.9965 |
0.9972 |
0.998 |
0.7213 |
| D87119_at |
-0.001772 |
0.9977 |
0.9982 |
0.9987 |
0.797 |
| D83597_at |
-0.002808 |
0.9964 |
0.9972 |
0.998 |
0.7347 |
Table continues below
| U28386_at |
0.7376 |
0.9377 |
0.8254 |
0.6841 |
0.9437 |
| D55716_at |
0.7532 |
0.8618 |
0.8696 |
0.5 |
0.8696 |
| X02152_at |
0.7532 |
0.8719 |
0.897 |
0.5 |
0.897 |
| HG4074.HT4344_at |
0.7532 |
0.8495 |
0.8776 |
0.5 |
0.8776 |
| HG1980.HT2023_at |
0.7606 |
0.8786 |
0.8565 |
0.6003 |
0.8931 |
| M63835_at |
0.74 |
0.8712 |
0.8799 |
0.5431 |
0.8996 |
| M63138_at |
0.72 |
0.9185 |
0.8492 |
0.6534 |
0.9324 |
| X01060_at |
0.7471 |
0.8096 |
0.84 |
0.5053 |
0.8448 |
| X56494_at |
0.7654 |
0.876 |
0.8285 |
0.5983 |
0.875 |
| D82348_at |
0.7675 |
0.8841 |
0.8407 |
0.6103 |
0.8938 |
| M14328_s_at |
0.7532 |
0.8308 |
0.822 |
0.5 |
0.822 |
| X17620_at |
0.7511 |
0.8386 |
0.838 |
0.5231 |
0.8499 |
| J03909_at |
0.7509 |
0.8412 |
0.862 |
0.5107 |
0.8653 |
| M57710_at |
0.736 |
0.835 |
0.8433 |
0.5531 |
0.8673 |
| U14518_at |
0.7813 |
0.8766 |
0.8468 |
0.6349 |
0.8903 |
| D79997_at |
0.7534 |
0.8134 |
0.8573 |
0.5255 |
0.8647 |
| L17131_rna1_at |
0.7514 |
0.8191 |
0.817 |
0.5275 |
0.8306 |
| M13792_at |
0.7532 |
0.809 |
0.8451 |
0.5 |
0.8451 |
| X16396_at |
0.7586 |
0.8661 |
0.8155 |
0.6166 |
0.8787 |
| M20471_at |
0.743 |
0.8534 |
0.8138 |
0.6108 |
0.8787 |
| X62078_at |
0.7737 |
0.8613 |
0.8181 |
0.638 |
0.8751 |
| L25876_at |
0.7609 |
0.9439 |
0.8096 |
0.772 |
0.9524 |
| L33842_rna1_at |
0.7615 |
0.8216 |
0.8315 |
0.5503 |
0.8452 |
| HG417.HT417_s_at |
0.7685 |
0.8375 |
0.789 |
0.6102 |
0.8441 |
| M60830_at |
0.8219 |
0.9944 |
0.5972 |
0.8135 |
0.9963 |
| U72342_at |
0.8114 |
0.9629 |
0.6006 |
0.8318 |
0.9669 |
| V00594_s_at |
0.7668 |
0.9282 |
0.8405 |
0.7654 |
0.9426 |
| U46006_s_at |
0.8015 |
0.9579 |
0.7885 |
0.8109 |
0.9679 |
| M94880_f_at |
0.8249 |
0.9596 |
0.714 |
0.8551 |
0.9687 |
| D78134_at |
0.8271 |
0.9632 |
0.7907 |
0.8412 |
0.9656 |
| Z21966_at |
0.8124 |
0.9347 |
0.845 |
0.805 |
0.9392 |
| X16983_at |
0.8222 |
0.957 |
0.7745 |
0.8296 |
0.9652 |
| Z35227_at |
0.7751 |
0.9221 |
0.701 |
0.7893 |
0.9282 |
| D87119_at |
0.8178 |
0.9362 |
0.7753 |
0.8255 |
0.9435 |
| D83597_at |
0.8002 |
0.9343 |
0.7148 |
0.8255 |
0.9365 |
| U28386_at |
0.6654 |
1.796 |
19.11 |
Inf |
1 |
| D55716_at |
0.7236 |
1.531 |
17.35 |
13.56 |
1 |
| X02152_at |
0.6466 |
1.597 |
14.98 |
14.98 |
1 |
| HG4074.HT4344_at |
0.6439 |
1.518 |
14.62 |
13.29 |
1 |
| HG1980.HT2023_at |
0.6169 |
1.601 |
14.12 |
Inf |
1 |
| M63835_at |
0.618 |
1.576 |
14.11 |
Inf |
1 |
| M63138_at |
0.5851 |
1.697 |
13.5 |
Inf |
1 |
| X01060_at |
0.576 |
1.375 |
13.04 |
6.42e+305 |
1 |
| X56494_at |
0.5675 |
1.5 |
12.8 |
Inf |
1 |
| D82348_at |
0.5657 |
1.543 |
12.69 |
Inf |
1 |
| M14328_s_at |
0.5768 |
1.313 |
12.66 |
9.91 |
1 |
| X17620_at |
0.5698 |
1.428 |
12.6 |
11.85 |
0.9 |
| J03909_at |
0.5584 |
1.49 |
12.52 |
6.42e+305 |
1 |
| M57710_at |
0.5586 |
1.468 |
12.34 |
13.58 |
1 |
| U14518_at |
0.5521 |
1.578 |
12.28 |
Inf |
1 |
| D79997_at |
0.5467 |
1.449 |
11.89 |
12.57 |
1 |
| L17131_rna1_at |
0.549 |
1.331 |
11.83 |
10.21 |
0.4 |
| M13792_at |
0.5372 |
1.397 |
11.69 |
10.99 |
0.85 |
| X16396_at |
0.5246 |
1.478 |
11.66 |
Inf |
0.55 |
| M20471_at |
0.5074 |
1.48 |
11.03 |
14.16 |
0.1 |
| X62078_at |
0.502 |
1.534 |
11.01 |
16.37 |
0.2 |
| L25876_at |
0.4648 |
1.574 |
10.85 |
Inf |
1 |
| L33842_rna1_at |
0.4999 |
1.406 |
10.85 |
11.55 |
0.55 |
| HG417.HT417_s_at |
0.479 |
1.315 |
10.26 |
10.98 |
0.25 |
| M60830_at |
0.4322 |
2 |
9.383 |
Inf |
0.1 |
| U72342_at |
0.3791 |
1.839 |
8.364 |
Inf |
0.15 |
| V00594_s_at |
0.3472 |
1.579 |
8.173 |
15.35 |
0.35 |
| U46006_s_at |
0.3337 |
1.67 |
7.812 |
Inf |
0.15 |
| M94880_f_at |
0.3353 |
1.832 |
7.753 |
Inf |
1 |
| D78134_at |
0.3462 |
1.828 |
7.728 |
Inf |
0.95 |
| Z21966_at |
0.3331 |
1.734 |
7.583 |
Inf |
0.45 |
| X16983_at |
0.3102 |
1.562 |
7.346 |
Inf |
0.55 |
| Z35227_at |
0.326 |
1.593 |
7.304 |
Inf |
0.65 |
| D87119_at |
0.3027 |
1.607 |
7.097 |
Inf |
0.5 |
| D83597_at |
0.2885 |
1.588 |
6.858 |
Inf |
0.35 |
- Accuracy: 0.974
- tAUC: 0.9828
- sensitivity: 0.9655
- specificity: 1
bootstrap:
hm <- heatMaps(Outcome = theOutcome,data = theData[,c(theOutcome,rownames(selFrequency))],title = "Heat Map",Scale = TRUE,hCluster = "col",cexRow = 0.25,cexCol = 0.75,srtCol = 45)

vlist <- rownames(selFrequency)
vlist <- cbind(vlist,vlist)
univ <- univariateRankVariables(variableList = vlist,formula = paste(theOutcome,"~1"),Outcome = theOutcome,data = theData,type = "LOGIT",rankingTest = "zIDI",uniType = "Binary")[,c("controlMean","controlStd","caseMean","caseStd","ROCAUC","WilcoxRes.p")]
100 : X65867_at
cnames <- colnames(univ);
univ <- cbind(univ,rm[rownames(univ)])
colnames(univ) <- c(cnames,"Frequency")
univ <- univ[order(-univ[,5]),]
pander::pander(univ[1:topFeat,],caption = "Features",round = 4)
Features (continued below)
| D55716_at |
616 |
242.2 |
2040 |
1404 |
0.9655 |
| HG4074.HT4344_at |
283.3 |
195.1 |
1397 |
1117 |
0.9428 |
| M63835_at |
-259.3 |
213 |
478.7 |
762.2 |
0.9383 |
| X02152_at |
3182 |
1552 |
10785 |
4792 |
0.9283 |
| D82348_at |
786.9 |
652.9 |
2923 |
1683 |
0.9283 |
| M14328_s_at |
4807 |
2440 |
11842 |
3903 |
0.9229 |
| U14518_at |
89.47 |
94.07 |
322.9 |
189 |
0.9224 |
| X56494_at |
2418 |
1270 |
7903 |
4091 |
0.9211 |
| HG1980.HT2023_at |
1845 |
882.5 |
6680 |
4117 |
0.9201 |
| X62078_at |
403.2 |
535.9 |
2299 |
1602 |
0.9183 |
| U28386_at |
437.6 |
324.7 |
1847 |
1263 |
0.9138 |
| X17620_at |
1041 |
629.7 |
3357 |
2033 |
0.912 |
| M63138_at |
2736 |
1101 |
7142 |
3569 |
0.9093 |
| X01060_at |
484.4 |
218 |
2327 |
2077 |
0.9083 |
| HG417.HT417_s_at |
3115 |
1590 |
9939 |
5682 |
0.9083 |
| M13792_at |
974.9 |
422.2 |
2909 |
2188 |
0.9065 |
| L17131_rna1_at |
2437 |
1408 |
7290 |
3390 |
0.9056 |
| X16396_at |
458.1 |
447.5 |
1827 |
1133 |
0.9029 |
| D31887_at |
94.47 |
238 |
648 |
514.5 |
0.9025 |
| X69433_at |
584.8 |
349 |
1672 |
1016 |
0.8988 |
| D13633_at |
108.5 |
94.2 |
396.8 |
259.1 |
0.8984 |
| D79997_at |
24.79 |
88.78 |
534.4 |
497.8 |
0.8975 |
| HG2279.HT2375_at |
3406 |
1399 |
7706 |
3226 |
0.8956 |
| L25876_at |
350.1 |
165.3 |
1174 |
845.2 |
0.8943 |
| M57710_at |
1317 |
558.8 |
5526 |
3684 |
0.8929 |
| U29680_at |
889.4 |
396.5 |
2945 |
2063 |
0.8929 |
| L33842_rna1_at |
983.4 |
359.8 |
2489 |
1338 |
0.8907 |
| Z21966_at |
248.9 |
106.6 |
59.79 |
133.1 |
0.8902 |
| J03909_at |
1972 |
906.5 |
6983 |
3983 |
0.8893 |
| U23143_at |
402.9 |
160.8 |
870.4 |
500.3 |
0.8893 |
| D55716_at |
0 |
0.7133 |
| HG4074.HT4344_at |
0 |
0.312 |
| M63835_at |
0 |
0.5307 |
| X02152_at |
0 |
0.5093 |
| D82348_at |
0 |
0.3027 |
| M14328_s_at |
0 |
0.364 |
| U14518_at |
0 |
0.5147 |
| X56494_at |
0 |
0.2413 |
| HG1980.HT2023_at |
0 |
0.184 |
| X62078_at |
0 |
0.12 |
| U28386_at |
0 |
0.104 |
| X17620_at |
0 |
0.1533 |
| M63138_at |
0 |
0.6613 |
| X01060_at |
0 |
0.1853 |
| HG417.HT417_s_at |
0 |
0.208 |
| M13792_at |
0 |
0.564 |
| L17131_rna1_at |
0 |
0.2133 |
| X16396_at |
0 |
0.1093 |
| D31887_at |
0 |
0.412 |
| X69433_at |
0 |
0.384 |
| D13633_at |
0 |
0.6267 |
| D79997_at |
0 |
0.276 |
| HG2279.HT2375_at |
0 |
0.1907 |
| L25876_at |
0 |
0.3387 |
| M57710_at |
0 |
0.576 |
| U29680_at |
0 |
0.5067 |
| L33842_rna1_at |
0 |
0.6253 |
| Z21966_at |
0 |
0.756 |
| J03909_at |
0 |
0.5533 |
| U23143_at |
0 |
0.2987 |