Results
Classifier Results
hm <- heatMaps(Outcome = "Outcome",data = cp$testPredictions,title = "Heat Map",Scale = TRUE,hCluster = "col",cexRow = 0.25,cexCol = 0.75,srtCol = 45)
[1] 2 
#The Times
pander::pander(cp$cpuElapsedTimes)
| 21.08 |
4.384 |
0.08818 |
0.4045 |
0.01091 |
0.04545 |
26.02 |
learningTime <- -1*cp$cpuElapsedTimes
bp <- barPlotCiError(as.matrix(cp$errorciTable),metricname = "Balanced Error",thesets = cp$thesets,themethod = cp$theMethod,main = "Balanced Error",offsets = c(0.5,0.05),scoreDirection = "<",args.legend = list(x = "topright"),col = terrain.colors(length(cp$theMethod)))

pander::pander(bp$ciTable$mean,caption = "Balanced Error Rate",round = 3)
| 0.03052 |
0.03988 |
0.04695 |
0.03147 |
0.02727 |
0.03766 |
0.02491 |
testBalancedError <- -bp$ciTable$mean;
testBalancedErrormin <- min(-bp$ciTable$top95)
testBalancedErrormax <- max(-bp$ciTable$low95)
bp <- barPlotCiError(as.matrix(cp$accciTable),metricname = "Accuracy",thesets = cp$thesets,themethod = cp$theMethod,main = "Accuracy",offsets = c(0.5,0.05),args.legend = list(x = "bottomright"),col = terrain.colors(length(cp$theMethod)))

pander::pander(bp$ciTable$mean,caption = "Accuracy",round = 3)
| 0.9772 |
0.9754 |
0.9701 |
0.9701 |
0.9684 |
0.9596 |
0.9543 |
testAccuracy <- bp$ciTable$mean;
testAccuracymin <- min(bp$ciTable$low95)
testAccuracymax <- max(bp$ciTable$top95)
bp <- barPlotCiError(as.matrix(cp$aucTable),metricname = "AUC",thesets = cp$thesets,themethod = cp$theMethod,main = "ROC AUC",offsets = c(0.5,0.05),args.legend = list(x = "bottomright"),col = terrain.colors(length(cp$theMethod)))

pander::pander(bp$ciTable$mean,caption = "ROC AUC",round = 3)
| 0.9947 |
0.9936 |
0.9938 |
0.9932 |
0.9943 |
0.9908 |
0.9838 |
testAUC <- bp$ciTable$mean;
testAUCmin <- min(bp$ciTable$low95)
testAUCmax <- max(bp$ciTable$top95)
bp <- barPlotCiError(as.matrix(cp$senTable),metricname = "Sensitivity",thesets = cp$thesets,themethod = cp$theMethod,main = "Sensititvity",offsets = c(0.5,0.05),args.legend = list(x = "bottomright"),col = terrain.colors(length(cp$theMethod)))

pander::pander(bp$ciTable$mean,caption = "Sensitivity",round = 3)
| 0.967 |
0.9623 |
0.9481 |
0.9623 |
0.9623 |
0.9387 |
0.967 |
testSEN <- bp$ciTable$mean;
testSENmin <- min(bp$ciTable$low95)
testSENmax <- max(bp$ciTable$top95)
bp <- barPlotCiError(as.matrix(cp$speTable),metricname = "Specificity",thesets = cp$thesets,themethod = cp$theMethod,main = "Specificity",offsets = c(0.5,0.05),args.legend = list(x = "bottomright"),col = terrain.colors(length(cp$theMethod)))

pander::pander(bp$ciTable$mean,caption = "Specificity",round = 3)
| 0.9832 |
0.986 |
0.9832 |
0.972 |
0.9748 |
0.958 |
0.958 |
testSPE <- bp$ciTable$mean;
testSPEmin <- min(bp$ciTable$low95)
testSPEmax <- max(bp$ciTable$top95)
Filter Results
pander::pander(cp$featsize)
Table continues below
| 37.64 |
11.27 |
14.36 |
37.64 |
68.73 |
68.91 |
71.14 |
73.18 |
72.23 |
par(mfrow = c(1,2))
barplot(cp$jaccard[order(-cp$jaccard)],las = 2,cex.axis = 1,cex.names = 0.7,main = "Jaccard Index",ylab = "Jaccard")
selectJaccard <- cp$jaccard[c("BSWiMS","LASSO","RF.ref","IDI","Kendall","mRMR")]
unsize <- cp$featsize + 1
barplot(unsize[order(unsize)],las = 2,cex.axis = 1,cex.names = 0.7,log = "y",main = "Number of Features",ylab = "# of Features+1")

selectFilFeatsize <- -cp$featsize[c("BSWiMS","LASSO","RF.ref","IDI","Kendall","mRMR")]
par(mfrow = c(1,1))
bp <- barPlotCiError(as.matrix(cp$errorciTable_filter),metricname = "Balanced Error",thesets = cp$theFiltersets,themethod = cp$theClassMethod,main = "Balanced Error",scoreDirection = "<",args.legend = list(x = "topleft"),col = terrain.colors(length(cp$theClassMethod)))

pander::pander(bp$ciTable$mean,caption = "Balanced Error Rate",round = 3)
Balanced Error Rate (continued below)
| SVM |
0.029 |
0.034 |
0.027 |
0.027 |
0.034 |
0.043 |
0.05 |
| RPART |
0.046 |
0.047 |
0.046 |
0.044 |
0.046 |
0.056 |
0.058 |
| KNN |
0.032 |
0.038 |
0.032 |
0.034 |
0.03 |
0.071 |
0.07 |
| Naive Bayes |
0.037 |
0.028 |
0.033 |
0.024 |
0.043 |
0.099 |
0.108 |
| NC RSS |
0.055 |
0.051 |
0.052 |
0.044 |
0.056 |
0.099 |
0.105 |
| NC Spearman |
0.086 |
0.1 |
0.117 |
0.162 |
0.103 |
0.152 |
0.18 |
| SVM |
0.053 |
0.06 |
0.06 |
0.062 |
| RPART |
0.062 |
0.044 |
0.044 |
0.034 |
| KNN |
0.073 |
0.077 |
0.077 |
0.077 |
| Naive Bayes |
0.111 |
0.108 |
0.108 |
0.11 |
| NC RSS |
0.112 |
0.122 |
0.122 |
0.119 |
| NC Spearman |
0.179 |
0.174 |
0.175 |
0.169 |
testFilBalancedError <- -apply(bp$ciTable$mean,2,max)[c("BSWiMS","LASSO","RF.ref","IDI","Kendall","mRMR")];
testFilBalancedErrormax <- -min(apply(bp$ciTable$low95,2,min)[c("BSWiMS","LASSO","RF.ref","IDI","Kendall","mRMR")])
testFilBalancedErrormin <- -max(apply(bp$ciTable$top95,2,max)[c("BSWiMS","LASSO","RF.ref","IDI","Kendall","mRMR")])
bp <- barPlotCiError(as.matrix(cp$accciTable_filter),metricname = "Accuracy",thesets = cp$theFiltersets,themethod = cp$theClassMethod,main = "Accuracy",offsets = c(0.5,0.05),args.legend = list(x = "bottomleft"),col = terrain.colors(length(cp$theClassMethod)))

pander::pander(bp$ciTable$mean,caption = "Accuracy",round = 3)
Accuracy (continued below)
| SVM |
0.975 |
0.975 |
0.97 |
0.977 |
0.972 |
0.96 |
0.944 |
| RPART |
0.956 |
0.958 |
0.956 |
0.956 |
0.956 |
0.949 |
0.968 |
| KNN |
0.972 |
0.974 |
0.968 |
0.972 |
0.975 |
0.933 |
0.93 |
| Naive Bayes |
0.965 |
0.968 |
0.974 |
0.979 |
0.958 |
0.9 |
0.888 |
| NC RSS |
0.938 |
0.944 |
0.942 |
0.951 |
0.937 |
0.895 |
0.87 |
| NC Spearman |
0.914 |
0.866 |
0.889 |
0.805 |
0.886 |
0.828 |
0.801 |
| SVM |
0.946 |
0.946 |
0.953 |
0.951 |
| RPART |
0.956 |
0.956 |
0.946 |
0.94 |
| KNN |
0.93 |
0.93 |
0.933 |
0.93 |
| Naive Bayes |
0.889 |
0.889 |
0.893 |
0.889 |
| NC RSS |
0.866 |
0.866 |
0.891 |
0.882 |
| NC Spearman |
0.798 |
0.796 |
0.791 |
0.793 |
testFilAccuracy <- apply(bp$ciTable$mean,2,max)[c("BSWiMS","LASSO","RF.ref","IDI","Kendall","mRMR")];
testFilAccuracymin <- min(apply(bp$ciTable$low95,2,min)[c("BSWiMS","LASSO","RF.ref","IDI","Kendall","mRMR")])
testFilAccuracymax <- max(apply(bp$ciTable$top95,2,max)[c("BSWiMS","LASSO","RF.ref","IDI","Kendall","mRMR")])
bp <- barPlotCiError(as.matrix(cp$aucTable_filter),metricname = "AUC",thesets = cp$theFiltersets,themethod = cp$theClassMethod,main = "ROC AUC",offsets = c(0.5,0.05),args.legend = list(x = "bottomleft"),col = terrain.colors(length(cp$theClassMethod)))

pander::pander(bp$ciTable$mean,caption = "ROC AUC",round = 3)
ROC AUC (continued below)
| SVM |
0.995 |
0.992 |
0.995 |
0.992 |
0.994 |
0.991 |
0.989 |
| RPART |
0.984 |
0.984 |
0.987 |
0.982 |
0.982 |
0.983 |
0.991 |
| KNN |
0.991 |
0.992 |
0.993 |
0.99 |
0.992 |
0.982 |
0.98 |
| NC RSS |
0.994 |
0.991 |
0.994 |
0.99 |
0.992 |
0.965 |
0.962 |
| Naive Bayes |
0.99 |
0.993 |
0.993 |
0.986 |
0.991 |
0.946 |
0.932 |
| NC Spearman |
0.972 |
0.973 |
0.943 |
0.97 |
0.951 |
0.94 |
0.929 |
| SVM |
0.989 |
0.989 |
0.989 |
0.989 |
| RPART |
0.991 |
0.987 |
0.981 |
0.977 |
| KNN |
0.98 |
0.98 |
0.982 |
0.981 |
| NC RSS |
0.962 |
0.962 |
0.954 |
0.952 |
| Naive Bayes |
0.932 |
0.932 |
0.938 |
0.939 |
| NC Spearman |
0.929 |
0.928 |
0.92 |
0.914 |
testFilAUC <- apply(bp$ciTable$mean,2,max)[c("BSWiMS","LASSO","RF.ref","IDI","Kendall","mRMR")];
testFilAUCmin <- min(apply(bp$ciTable$low95,2,min)[c("BSWiMS","LASSO","RF.ref","IDI","Kendall","mRMR")])
testFilAUCmax <- max(apply(bp$ciTable$top95,2,max)[c("BSWiMS","LASSO","RF.ref","IDI","Kendall","mRMR")])
bp <- barPlotCiError(as.matrix(cp$senciTable_filter),metricname = "Sensitivity",thesets = cp$theFiltersets,themethod = cp$theClassMethod,main = "Sensitivity",offsets = c(0.5,0.05),args.legend = list(x = "bottomleft"),col = terrain.colors(length(cp$theClassMethod)))

pander::pander(bp$ciTable$mean,caption = "Sensitivity",round = 3)
Sensitivity (continued below)
| NC RSS |
0.976 |
0.967 |
0.976 |
0.972 |
0.972 |
0.925 |
0.925 |
| RPART |
0.958 |
0.939 |
0.943 |
0.948 |
0.948 |
0.925 |
0.958 |
| SVM |
0.958 |
0.962 |
0.948 |
0.943 |
0.953 |
0.948 |
0.915 |
| NC Spearman |
0.967 |
0.948 |
0.943 |
0.939 |
0.915 |
0.929 |
0.948 |
| Naive Bayes |
0.962 |
0.962 |
0.967 |
0.953 |
0.958 |
0.906 |
0.901 |
| KNN |
0.943 |
0.948 |
0.939 |
0.948 |
0.953 |
0.91 |
0.896 |
| NC RSS |
0.925 |
0.925 |
0.91 |
0.91 |
| RPART |
0.958 |
0.958 |
0.929 |
0.929 |
| SVM |
0.92 |
0.92 |
0.939 |
0.934 |
| NC Spearman |
0.939 |
0.939 |
0.934 |
0.934 |
| Naive Bayes |
0.901 |
0.901 |
0.887 |
0.887 |
| KNN |
0.896 |
0.896 |
0.915 |
0.915 |
testFilSEN <- apply(bp$ciTable$mean,2,max)[c("BSWiMS","LASSO","RF.ref","IDI","Kendall","mRMR")];
testFilSENmin <- min(apply(bp$ciTable$low95,2,min)[c("BSWiMS","LASSO","RF.ref","IDI","Kendall","mRMR")])
testFilSENmax <- max(apply(bp$ciTable$top95,2,max)[c("BSWiMS","LASSO","RF.ref","IDI","Kendall","mRMR")])
bp <- barPlotCiError(as.matrix(cp$speciTable_filter),metricname = "Specificity",thesets = cp$theFiltersets,themethod = cp$theClassMethod,main = "Specificity",offsets = c(0.5,0.05),args.legend = list(x = "bottomleft"),col = terrain.colors(length(cp$theClassMethod)))

pander::pander(bp$ciTable$mean,caption = "Specificity",round = 3)
Specificity (continued below)
| SVM |
0.989 |
0.983 |
0.983 |
0.989 |
0.989 |
0.966 |
0.961 |
| KNN |
0.989 |
0.986 |
0.989 |
0.983 |
0.992 |
0.947 |
0.95 |
| RPART |
0.955 |
0.964 |
0.969 |
0.961 |
0.961 |
0.964 |
0.975 |
| Naive Bayes |
0.989 |
0.978 |
0.972 |
0.969 |
0.961 |
0.896 |
0.88 |
| NC RSS |
0.936 |
0.922 |
0.93 |
0.919 |
0.916 |
0.877 |
0.838 |
| NC Spearman |
0.709 |
0.857 |
0.818 |
0.913 |
0.854 |
0.768 |
0.714 |
| SVM |
0.961 |
0.961 |
0.961 |
0.961 |
| KNN |
0.944 |
0.95 |
0.95 |
0.938 |
| RPART |
0.955 |
0.955 |
0.955 |
0.947 |
| Naive Bayes |
0.896 |
0.882 |
0.882 |
0.891 |
| NC RSS |
0.88 |
0.832 |
0.832 |
0.866 |
| NC Spearman |
0.706 |
0.714 |
0.711 |
0.709 |
testFilSPE <- apply(bp$ciTable$mean,2,max)[c("BSWiMS","LASSO","RF.ref","IDI","Kendall","mRMR")];
testFilSPEmin <- min(apply(bp$ciTable$low95,2,min)[c("BSWiMS","LASSO","RF.ref","IDI","Kendall","mRMR")])
testFilSPEmax <- max(apply(bp$ciTable$top95,2,max)[c("BSWiMS","LASSO","RF.ref","IDI","Kendall","mRMR")])
Radar Plots
op <- par(no.readonly = TRUE)
library(fmsb)
par(mfrow = c(1,2),xpd = TRUE,pty = "s",mar = c(1,1,1,1))
classRanks <- c(testBalancedErrormax,testSENmax,testSPEmax,testAccuracymax,testAUCmax,max(learningTime))
classRanks <- rbind(classRanks,c(testBalancedErrormin,0,0,0,0,min(learningTime)))
classRanks <- as.data.frame(rbind(classRanks,cbind(testBalancedError[names(learningTime)],testSEN[names(learningTime)],testSPE[names(learningTime)],testAccuracy[names(learningTime)],testAUC[names(learningTime)],learningTime)))
colnames(classRanks) <- c("B.Error","Sen","Spe","Accuracy","ROC AUC","CPU Time")
colors_border = c( rgb(1.0,0.0,0.0,1.0), rgb(0.0,1.0,0.0,1.0) , rgb(0.0,0.0,1.0,1.0), rgb(0.2,0.2,0.0,1.0), rgb(0.0,1.0,1.0,1.0), rgb(1.0,0.0,1.0,1.0), rgb(0.0,0.0,0.0,1.0) )
colors_in = c( rgb(1.0,0.0,0.0,0.05), rgb(0.0,1.0,0.0,0.05) , rgb(0.0,0.0,1.0,0.05),rgb(1.0,1.0,0.0,0.05), rgb(0.0,1.0,1.0,0.05) , rgb(1.0,0.0,1.0,0.05), rgb(0.0,0.0,0.0,0.05) )
radarchart(classRanks,axistype = 0,maxmin = T,pcol = colors_border,pfcol = colors_in,plwd = c(6,2,2,2,2,2,2),plty = 1, cglcol = "grey", cglty = 1,axislabcol = "black",cglwd = 0.8, vlcex = 0.5 ,title = "Prediction Model")
legend("topleft",legend = rownames(classRanks[-c(1,2),]),bty = "n",pch = 20,col = colors_in,text.col = colors_border,cex = 0.5,pt.cex = 2)
filterRanks <- c(max(selectJaccard),max(selectFilFeatsize),testFilBalancedErrormax, testFilSENmax,testFilSPEmax, testFilAccuracymax,testFilAUCmax);
filterRanks <- rbind(filterRanks,c(0,min(selectFilFeatsize),testFilBalancedErrormin,0,0, 0,0));
filterRanks <- as.data.frame(rbind(filterRanks,cbind(selectJaccard,selectFilFeatsize,testFilBalancedError,testFilSEN,testFilSPE ,testFilAccuracy,testFilAUC)));
colnames(filterRanks) <- c("Jaccard","Size","B.Error","Sen","Spe","Accuracy","ROC.ACU")
colors_border = c( rgb(1.0,0.0,0.0,1.0), rgb(0.0,1.0,0.0,1.0) , rgb(0.0,0.0,1.0,1.0), rgb(0.2,0.2,0.0,1.0), rgb(0.0,1.0,1.0,1.0),rgb(1.0,0.0,1.0,1.0) )
colors_in = c( rgb(1.0,0.0,0.0,0.05), rgb(0.0,1.0,0.0,0.05) , rgb(0.0,0.0,1.0,0.05),rgb(1.0,1.0,0.0,0.05), rgb(0.0,1.0,1.0,0.05), rgb(1.0,0.0,1.0,0.05) )
radarchart(filterRanks,axistype = 0,maxmin = T,pcol = colors_border,pfcol = colors_in,plwd = c(6,2,2,2,2,2),plty = 1, cglcol = "grey", cglty = 1,axislabcol = "black",cglwd = 0.8, vlcex = 0.5,title = "Filter Method" )
legend("topleft",legend = rownames(filterRanks[-c(1,2),]),bty = "n",pch = 20,col = colors_in,text.col = colors_border,cex = 0.5,pt.cex = 2)

par(mfrow = c(1,1))
detach("package:fmsb", unload=TRUE)
par(op)
Feature Analysis
rm <- rowMeans(cp$featureSelectionFrequency)
selFrequency <- cp$featureSelectionFrequency[rm > 0.1,]
gplots::heatmap.2(selFrequency,trace = "none",mar = c(10,10),main = "Features",cexRow = 0.5)

topFeat <- min(ncol(BSWiMSMODEL$bagging$formulaNetwork),30);
gplots::heatmap.2(BSWiMSMODEL$bagging$formulaNetwork[1:topFeat,1:topFeat],trace="none",mar = c(10,10),main = "B:SWiMS Formula Network")

pander::pander(summary(BSWiMSMODEL$bagging$bagged.model,caption="Colon",round = 3))
coefficients:
Table continues below
| X26.X27 |
0.005039 |
1.004 |
1.005 |
1.006 |
0.9605 |
| X16.X29 |
0.1087 |
1.071 |
1.115 |
1.161 |
0.9315 |
| X16.X28 |
0.004034 |
1.004 |
1.004 |
1.004 |
0.9441 |
| X16.X30 |
0.04667 |
1.036 |
1.048 |
1.06 |
0.946 |
| X9.X26 |
0.002248 |
1.001 |
1.002 |
1.003 |
0.9377 |
| X10.X26 |
0.008635 |
1.003 |
1.009 |
1.014 |
0.9378 |
| X25 |
0.02404 |
1.01 |
1.024 |
1.039 |
0.9239 |
| X7.X26 |
0.2208 |
0.3598 |
1.247 |
4.323 |
0.9463 |
| X4.X26 |
5.68e-05 |
1 |
1 |
1 |
0.9168 |
| X26.X32 |
0.007347 |
1.004 |
1.007 |
1.011 |
0.9434 |
| X8.X26 |
0.0007643 |
1.001 |
1.001 |
1.001 |
0.9294 |
| X11.X26 |
0.0108 |
1.002 |
1.011 |
1.019 |
0.9444 |
| X12.X26 |
0.054 |
1.012 |
1.055 |
1.101 |
0.9478 |
| X26.X31 |
0.004806 |
1.003 |
1.005 |
1.007 |
0.9494 |
| X6.X27 |
0.01409 |
1.007 |
1.014 |
1.022 |
0.9435 |
| X26.X30 |
0.005429 |
1.002 |
1.005 |
1.009 |
0.9318 |
| X24.X26 |
0.0001418 |
0.9989 |
1 |
1.001 |
0.9201 |
| X6.X24 |
4.351e-05 |
1 |
1 |
1 |
0.8956 |
| X6.X31 |
0.00112 |
1 |
1.001 |
1.002 |
0.9327 |
| X26.X29 |
0.001579 |
0.9992 |
1.002 |
1.004 |
0.9231 |
| X25.X31 |
0.01783 |
1.009 |
1.018 |
1.027 |
0.9349 |
| X24.X30 |
0.03226 |
1.01 |
1.033 |
1.056 |
0.8791 |
| X15.X30 |
0.07242 |
1.044 |
1.075 |
1.107 |
0.9263 |
| X17.X26 |
0.02044 |
1.007 |
1.021 |
1.035 |
0.8643 |
| X19.X32 |
-58.25 |
1.337e-29 |
5.025e-26 |
1.889e-22 |
0.7426 |
| X7.X25 |
0.1597 |
1.085 |
1.173 |
1.269 |
0.9274 |
| X25.X27 |
0.2921 |
0.1928 |
1.339 |
9.305 |
0.9567 |
| X10.X27 |
1.559 |
3.047 |
4.756 |
7.422 |
0.9049 |
| X27.X31 |
16.37 |
11.19 |
12917185 |
1.492e+13 |
0.6969 |
| X8.X19 |
-29.82 |
2.634e-17 |
1.118e-13 |
4.749e-10 |
0.7767 |
| X9.X19 |
-6.034 |
0.0003703 |
0.002396 |
0.0155 |
0.802 |
| X4.X25 |
0.0003039 |
1 |
1 |
1 |
0.8991 |
| X8.X27 |
8.297 |
670 |
4012 |
24029 |
0.8201 |
| X27 |
7.478 |
22.41 |
1769 |
139669 |
0.6484 |
| X19.X29 |
-9.221 |
9.58e-11 |
9.893e-05 |
102.2 |
0.7794 |
| X11.X24 |
0.1321 |
1.047 |
1.141 |
1.244 |
0.7736 |
| X7.X27 |
4.29 |
14.05 |
72.93 |
378.6 |
0.6441 |
| X16.X24 |
0.000138 |
1 |
1 |
1 |
0.9081 |
| X24.X31 |
1.735 |
0.0002233 |
5.671 |
144008 |
0.7595 |
| X4.X27 |
0.4848 |
1.156 |
1.624 |
2.281 |
0.8066 |
| X23.X29 |
-0.003609 |
0.995 |
0.9964 |
0.9978 |
0.9127 |
| X24.X27 |
0.2817 |
0.9528 |
1.325 |
1.844 |
0.762 |
| X16.X27 |
0.008205 |
1.005 |
1.008 |
1.012 |
0.9333 |
| X12.X24 |
0.1049 |
1.032 |
1.111 |
1.195 |
0.6873 |
| X7.X24 |
0.4024 |
1.039 |
1.495 |
2.152 |
0.7829 |
| X24.X25 |
0.0003394 |
1 |
1 |
1.001 |
0.9166 |
| X17.X24 |
0.8775 |
0.942 |
2.405 |
6.14 |
0.6275 |
| X4.X7 |
0.4081 |
1.238 |
1.504 |
1.827 |
0.7787 |
| X4.X6 |
2.484e-06 |
1 |
1 |
1 |
0.881 |
| X10.X24 |
0.09498 |
1.059 |
1.1 |
1.142 |
0.9165 |
| X13.X24 |
0.001772 |
1.001 |
1.002 |
1.003 |
0.8784 |
| X22.X29 |
-10.38 |
1.798e-07 |
3.096e-05 |
0.005332 |
0.7588 |
| X24 |
0.01549 |
1.009 |
1.016 |
1.023 |
0.7226 |
| X4.X31 |
0.04665 |
0.9821 |
1.048 |
1.118 |
0.8054 |
| X4.X24 |
6.409e-05 |
1 |
1 |
1 |
0.7559 |
Table continues below
| X26.X27 |
0.3471 |
0.9605 |
0.959 |
0.5 |
0.959 |
| X16.X29 |
0.7011 |
0.9528 |
0.9215 |
0.6975 |
0.9483 |
| X16.X28 |
0.5549 |
0.948 |
0.9327 |
0.6102 |
0.9397 |
| X16.X30 |
0.4328 |
0.9468 |
0.9418 |
0.5631 |
0.9431 |
| X9.X26 |
0.6199 |
0.9424 |
0.933 |
0.657 |
0.939 |
| X10.X26 |
0.6171 |
0.9482 |
0.9408 |
0.6697 |
0.9473 |
| X25 |
0.7631 |
0.9586 |
0.9264 |
0.7556 |
0.9575 |
| X7.X26 |
0.7692 |
0.976 |
0.9443 |
0.7615 |
0.9751 |
| X4.X26 |
0.7686 |
0.9679 |
0.9161 |
0.7694 |
0.9672 |
| X26.X32 |
0.6759 |
0.9524 |
0.9401 |
0.7275 |
0.9488 |
| X8.X26 |
0.7346 |
0.9529 |
0.9221 |
0.7372 |
0.9512 |
| X11.X26 |
0.7839 |
0.9716 |
0.9441 |
0.7827 |
0.9706 |
| X12.X26 |
0.7959 |
0.9748 |
0.9456 |
0.7901 |
0.9755 |
| X26.X31 |
0.7975 |
0.9716 |
0.9453 |
0.7957 |
0.9672 |
| X6.X27 |
0.7977 |
0.9679 |
0.9437 |
0.7902 |
0.9676 |
| X26.X30 |
0.7934 |
0.9613 |
0.9333 |
0.8017 |
0.9619 |
| X24.X26 |
0.8232 |
0.9729 |
0.9184 |
0.8342 |
0.9721 |
| X6.X24 |
0.8396 |
0.9601 |
0.8875 |
0.8328 |
0.9585 |
| X6.X31 |
0.8133 |
0.9434 |
0.9315 |
0.8036 |
0.9415 |
| X26.X29 |
0.8416 |
0.9519 |
0.9194 |
0.8412 |
0.9506 |
| X25.X31 |
0.8254 |
0.956 |
0.9331 |
0.8233 |
0.9527 |
| X24.X30 |
0.7873 |
0.9294 |
0.8728 |
0.8 |
0.925 |
| X15.X30 |
0.8075 |
0.9329 |
0.92 |
0.8364 |
0.9312 |
| X17.X26 |
0.7902 |
0.9233 |
0.8438 |
0.8175 |
0.9156 |
| X19.X32 |
0.9311 |
0.961 |
0.7136 |
0.9208 |
0.9578 |
| X7.X25 |
0.901 |
0.9707 |
0.9251 |
0.8968 |
0.9689 |
| X25.X27 |
0.9166 |
0.9847 |
0.951 |
0.9159 |
0.9843 |
| X10.X27 |
0.8735 |
0.9304 |
0.902 |
0.8549 |
0.9235 |
| X27.X31 |
0.9084 |
0.9747 |
0.6783 |
0.9047 |
0.9736 |
| X8.X19 |
0.8749 |
0.9339 |
0.748 |
0.8829 |
0.9278 |
| X9.X19 |
0.9346 |
0.9458 |
0.757 |
0.9266 |
0.943 |
| X4.X25 |
0.8992 |
0.9682 |
0.8958 |
0.9051 |
0.9666 |
| X8.X27 |
0.9186 |
0.9706 |
0.8172 |
0.9178 |
0.9679 |
| X27 |
0.9165 |
0.9654 |
0.6371 |
0.9155 |
0.9647 |
| X19.X29 |
0.9319 |
0.9539 |
0.7441 |
0.929 |
0.9531 |
| X11.X24 |
0.9455 |
0.9754 |
0.7669 |
0.9454 |
0.975 |
| X7.X27 |
0.9216 |
0.9539 |
0.6421 |
0.9241 |
0.9528 |
| X16.X24 |
0.9324 |
0.964 |
0.8957 |
0.9297 |
0.9612 |
| X24.X31 |
0.9406 |
0.9688 |
0.7405 |
0.9406 |
0.967 |
| X4.X27 |
0.9474 |
0.9763 |
0.8039 |
0.9442 |
0.9731 |
| X23.X29 |
0.9186 |
0.948 |
0.9094 |
0.9106 |
0.9463 |
| X24.X27 |
0.9464 |
0.972 |
0.7594 |
0.945 |
0.9709 |
| X16.X27 |
0.9275 |
0.9549 |
0.9238 |
0.9228 |
0.95 |
| X12.X24 |
0.9397 |
0.9623 |
0.6712 |
0.9396 |
0.9618 |
| X7.X24 |
0.9451 |
0.9728 |
0.7826 |
0.9434 |
0.9718 |
| X24.X25 |
0.9505 |
0.9707 |
0.9176 |
0.9469 |
0.9692 |
| X17.X24 |
0.9325 |
0.9552 |
0.6098 |
0.932 |
0.9515 |
| X4.X7 |
0.9393 |
0.964 |
0.7769 |
0.938 |
0.9626 |
| X4.X6 |
0.9281 |
0.9549 |
0.8736 |
0.9255 |
0.954 |
| X10.X24 |
0.9362 |
0.9544 |
0.9138 |
0.9341 |
0.9525 |
| X13.X24 |
0.9127 |
0.9402 |
0.8632 |
0.91 |
0.9363 |
| X22.X29 |
0.9431 |
0.9598 |
0.7154 |
0.9373 |
0.958 |
| X24 |
0.9314 |
0.9601 |
0.7273 |
0.9311 |
0.9605 |
| X4.X31 |
0.938 |
0.9556 |
0.7918 |
0.9398 |
0.9515 |
| X4.X24 |
0.9284 |
0.9598 |
0.7502 |
0.9234 |
0.9593 |
| X26.X27 |
0.8791 |
1.838 |
40.42 |
35.28 |
1 |
| X16.X29 |
0.7821 |
1.789 |
32.5 |
30.97 |
1 |
| X16.X28 |
0.769 |
1.799 |
29.29 |
31.29 |
0.1 |
| X16.X30 |
0.7063 |
1.755 |
28.38 |
28.12 |
1 |
| X9.X26 |
0.7386 |
1.74 |
27.55 |
26.83 |
0.4 |
| X10.X26 |
0.603 |
1.784 |
20.73 |
30.31 |
1 |
| X25 |
0.501 |
1.778 |
17.23 |
32.04 |
1 |
| X7.X26 |
0.5657 |
1.889 |
17.12 |
Inf |
1 |
| X4.X26 |
0.4567 |
1.722 |
16.84 |
32.1 |
0.9 |
| X26.X32 |
0.4587 |
1.744 |
16.73 |
27.44 |
1 |
| X8.X26 |
0.5473 |
1.718 |
16.7 |
25.2 |
0.15 |
| X11.X26 |
0.514 |
1.813 |
15.48 |
34.52 |
1 |
| X12.X26 |
0.4858 |
1.846 |
14.71 |
36.98 |
1 |
| X26.X31 |
0.47 |
1.797 |
14.14 |
31.45 |
1 |
| X6.X27 |
0.446 |
1.816 |
13.98 |
35.68 |
1 |
| X26.X30 |
0.397 |
1.736 |
13.42 |
28.43 |
1 |
| X24.X26 |
0.3668 |
1.81 |
13.33 |
1.498e+306 |
1 |
| X6.X24 |
0.3241 |
1.663 |
11.87 |
28.05 |
0.85 |
| X6.X31 |
0.325 |
1.38 |
11.75 |
18.52 |
0.45 |
| X26.X29 |
0.2789 |
1.565 |
11.1 |
21.72 |
0.85 |
| X25.X31 |
0.2896 |
1.576 |
10.81 |
20.33 |
0.9 |
| X24.X30 |
0.3002 |
1.527 |
10.13 |
18.72 |
0.3 |
| X15.X30 |
0.2215 |
1.419 |
9.046 |
16.06 |
0.25 |
| X17.X26 |
0.1917 |
1.143 |
7.417 |
11.46 |
0.5 |
| X19.X32 |
0.1458 |
1.794 |
7.277 |
31.96 |
0.4 |
| X7.X25 |
0.1913 |
1.778 |
7.211 |
30.72 |
1 |
| X25.X27 |
0.185 |
1.909 |
6.923 |
52.06 |
1 |
| X10.X27 |
0.175 |
1.213 |
6.866 |
12.29 |
0.1 |
| X27.X31 |
0.1649 |
1.671 |
6.718 |
25.15 |
0.5 |
| X8.X19 |
0.1268 |
1.677 |
6.663 |
26.5 |
0.5 |
| X9.X19 |
0.1123 |
1.774 |
6.333 |
30.01 |
0.15 |
| X4.X25 |
0.1437 |
1.717 |
6.287 |
28.79 |
0.9 |
| X8.X27 |
0.1168 |
1.857 |
5.984 |
38.89 |
0.2 |
| X27 |
0.1305 |
1.63 |
5.851 |
22.52 |
0.6 |
| X19.X29 |
0.1071 |
1.708 |
5.529 |
27.01 |
0.2 |
| X11.X24 |
0.1129 |
1.637 |
5.237 |
22.39 |
0.55 |
| X7.X27 |
0.1046 |
1.607 |
5.105 |
21.25 |
0.1 |
| X16.X24 |
0.1017 |
1.441 |
5.065 |
18.49 |
0.4 |
| X24.X31 |
0.1093 |
1.71 |
5.03 |
31.58 |
0.95 |
| X4.X27 |
0.102 |
1.726 |
5.015 |
34.81 |
1 |
| X23.X29 |
0.09881 |
0.985 |
4.959 |
9.304 |
0.1 |
| X24.X27 |
0.09699 |
1.742 |
4.914 |
29.93 |
1 |
| X16.X27 |
0.0926 |
1.303 |
4.854 |
14.31 |
0.15 |
| X12.X24 |
0.1026 |
1.583 |
4.818 |
22.1 |
0.2 |
| X7.X24 |
0.09283 |
1.707 |
4.789 |
28.68 |
1 |
| X24.X25 |
0.09945 |
1.752 |
4.746 |
33.15 |
1 |
| X17.X24 |
0.08342 |
1.495 |
4.739 |
19.74 |
0.35 |
| X4.X7 |
0.08841 |
1.702 |
4.632 |
25.68 |
0.85 |
| X4.X6 |
0.07132 |
1.379 |
4.219 |
14.41 |
0.15 |
| X10.X24 |
0.07324 |
1.502 |
4.188 |
18.52 |
0.8 |
| X13.X24 |
0.06966 |
0.991 |
4.12 |
8.709 |
0.1 |
| X22.X29 |
0.06055 |
1.58 |
3.952 |
20.66 |
0.1 |
| X24 |
0.06743 |
1.673 |
3.81 |
25.56 |
0.55 |
| X4.X31 |
0.06431 |
1.411 |
3.766 |
16.66 |
0.4 |
| X4.X24 |
0.05054 |
1.482 |
3.43 |
17.38 |
0.1 |
- Accuracy: 0.9882
- tAUC: 0.987
- sensitivity: 0.9831
- specificity: 0.991
bootstrap:
hm <- heatMaps(Outcome = theOutcome,data = theData[,c(theOutcome,rownames(selFrequency))],title = "Heat Map",Scale = TRUE,hCluster = "col",cexRow = 0.25,cexCol = 0.75,srtCol = 45)
[1] 2 
vlist <- rownames(selFrequency)
vlist <- cbind(vlist,vlist)
univ <- univariateRankVariables(variableList = vlist,formula = paste(theOutcome,"~1"),Outcome = theOutcome,data = theData,type = "LM",rankingTest = "Ztest",uniType = "Regression")[,c("cohortMean","cohortStd","kendall.r","kendall.p")]
#> 100 : X17.X31
cnames <- colnames(univ);
univ <- cbind(univ,rm[rownames(univ)])
colnames(univ) <- c(cnames,"Frequency")
univ <- univ[order(-univ[,5]),]
pander::pander(univ,caption = "Features",round = 4)
Features
| X14.X28 |
0.3014 |
0.2331 |
0.4354 |
0 |
0.5496 |
| X11.X27 |
0.0242 |
0.0067 |
0.3637 |
0 |
0.5455 |
| X14.X20 |
0.0151 |
0.0139 |
0.2869 |
0 |
0.5455 |
| X17.X28 |
0.0018 |
0.0013 |
0.4052 |
0 |
0.5372 |
| X31.X32 |
0.025 |
0.0103 |
0.3264 |
0 |
0.5331 |
| X11.X24 |
4.667 |
1.376 |
0.4528 |
0 |
0.5248 |
| X22.X24 |
0.0974 |
0.0677 |
0.2926 |
0 |
0.5248 |
| X18.X21 |
6e-04 |
7e-04 |
0.2221 |
0 |
0.5165 |
| X21.X28 |
0.0053 |
0.0051 |
0.4142 |
0 |
0.5124 |
| X27.X32 |
0.0114 |
0.0042 |
0.3307 |
0 |
0.5041 |
| X8.X21 |
0.0022 |
0.0021 |
0.3544 |
0 |
0.5041 |
| X21.X24 |
0.5235 |
0.2432 |
0.1713 |
0 |
0.5 |
| X14.X31 |
0.3486 |
0.1627 |
0.1582 |
0 |
0.5 |
| X27.X31 |
0.0391 |
0.0136 |
0.3842 |
0 |
0.4959 |
| X11.X32 |
0.0154 |
0.0051 |
0.3006 |
0 |
0.4917 |
| X32 |
0.0839 |
0.0181 |
0.2546 |
0 |
0.4917 |
| X11.X12 |
0.0115 |
0.0027 |
0.1684 |
0 |
0.4793 |
| X4.X31 |
5.623 |
1.849 |
0.4652 |
0 |
0.4752 |
| X17.X18 |
2e-04 |
2e-04 |
0.2264 |
0 |
0.4711 |
| X14.X24 |
32.63 |
19.28 |
0.1664 |
0 |
0.4628 |
| X17.X25 |
0.7333 |
0.3568 |
0.4342 |
0 |
0.4587 |
| X20.X24 |
0.3062 |
0.1782 |
0.5016 |
0 |
0.4463 |
| X31 |
0.2901 |
0.0619 |
0.3244 |
0 |
0.438 |
| X27 |
0.1324 |
0.0228 |
0.348 |
0 |
0.4215 |
| X7.X11 |
0.0177 |
0.0048 |
0.3263 |
0 |
0.4132 |
| X21.X26 |
17.57 |
13.99 |
0.577 |
0 |
0.405 |
| X21.X25 |
2.175 |
1.173 |
0.42 |
0 |
0.4008 |
| X14.X19 |
0.0421 |
0.0622 |
0.3298 |
0 |
0.4008 |
| X24.X26 |
23819 |
19106 |
0.6585 |
0 |
0.3802 |
| X17.X26 |
5.889 |
4.48 |
0.5863 |
0 |
0.3802 |
| X4.X7 |
1.857 |
0.4872 |
0.4685 |
0 |
0.3719 |
| X22.X31 |
0.0011 |
8e-04 |
0.2518 |
0 |
0.3719 |
| X4.X12 |
1.209 |
0.2914 |
0.3187 |
0 |
0.3678 |
| X14.X26 |
1045 |
825.3 |
0.5585 |
0 |
0.3595 |
| X24 |
25.68 |
6.146 |
0.3897 |
0 |
0.3595 |
| X4.X27 |
2.561 |
0.7593 |
0.4799 |
0 |
0.3595 |
| X17.X31 |
0.002 |
9e-04 |
0.1233 |
3e-04 |
0.3347 |
| X19.X24 |
0.8375 |
0.7736 |
0.4537 |
0 |
0.3306 |
| X14.X16 |
51.88 |
71.38 |
0.4813 |
0 |
0.3264 |
| X24.X32 |
2.18 |
0.8164 |
0.4184 |
0 |
0.3223 |
| X18.X24 |
0.6699 |
0.5264 |
0.3945 |
0 |
0.3223 |
| X16.X21 |
0.879 |
1.453 |
0.4887 |
0 |
0.314 |
| X8.X24 |
2.76 |
1.741 |
0.5655 |
0 |
0.3058 |
| X21.X27 |
0.0027 |
0.0012 |
0.0977 |
0.0044 |
0.3058 |
| X23.X27 |
2.177 |
0.8291 |
0.6563 |
0 |
0.3017 |
| X16.X17 |
0.2943 |
0.4696 |
0.4886 |
0 |
0.3017 |
| X26.X27 |
119.3 |
85.62 |
0.6679 |
0 |
0.2975 |
| X14.X22 |
0.005 |
0.0058 |
0.1208 |
4e-04 |
0.2975 |
| X10.X24 |
1.326 |
1.196 |
0.6612 |
0 |
0.2893 |
| X21.X31 |
0.0062 |
0.0039 |
0.0839 |
0.0144 |
0.2893 |
| X24.X30 |
3.088 |
2.166 |
0.651 |
0 |
0.2851 |
| X22.X26 |
3.308 |
2.999 |
0.5629 |
0 |
0.2769 |
| X4.X24 |
519.4 |
239.9 |
0.395 |
0 |
0.2686 |
| X12.X24 |
1.61 |
0.4194 |
0.3426 |
0 |
0.2686 |
| X21.X32 |
0.0017 |
9e-04 |
0.0764 |
0.0259 |
0.2686 |
| X17.X21 |
2e-04 |
1e-04 |
-0.0604 |
0.0782 |
0.2686 |
| X30 |
0.1146 |
0.0657 |
0.6391 |
0 |
0.2645 |
| X4.X32 |
1.629 |
0.5511 |
0.4141 |
0 |
0.2603 |
| X3.X4 |
277.4 |
109.3 |
0.5897 |
0 |
0.2562 |
| X7.X26 |
86.51 |
61.38 |
0.6629 |
0 |
0.2521 |
| X26.X30 |
128.8 |
150.6 |
0.6659 |
0 |
0.2479 |
| X3 |
14.13 |
3.524 |
0.5991 |
0 |
0.2479 |
| X14.X32 |
0.1017 |
0.0498 |
0.1298 |
2e-04 |
0.2397 |
| X7.X24 |
2.477 |
0.7098 |
0.4801 |
0 |
0.2355 |
| X13 |
0.4052 |
0.2773 |
0.5042 |
0 |
0.2355 |
| X21 |
0.0205 |
0.0083 |
-0.0755 |
0.0278 |
0.2355 |
| X24.X31 |
7.537 |
2.745 |
0.4609 |
0 |
0.2273 |
| X6.X27 |
87.68 |
52.22 |
0.6578 |
0 |
0.2231 |
| X26.X31 |
262.8 |
192.2 |
0.657 |
0 |
0.2149 |
| X11.X31 |
0.0537 |
0.019 |
0.319 |
0 |
0.2149 |
| X17.X27 |
0.001 |
5e-04 |
0.0993 |
0.0038 |
0.2149 |
| X21.X22 |
1e-04 |
1e-04 |
0.09 |
0.0087 |
0.2149 |
| X26.X29 |
304.1 |
376.6 |
0.6544 |
0 |
0.2107 |
| X18.X22 |
1e-04 |
2e-04 |
0.2633 |
0 |
0.2107 |
| X3.X31 |
4.134 |
1.498 |
0.6264 |
0 |
0.2066 |
| X10.X14 |
0.06 |
0.0626 |
0.5805 |
0 |
0.2066 |
| X14.X25 |
128.6 |
68.14 |
0.4106 |
0 |
0.2025 |
| X25.X27 |
14.38 |
5.733 |
0.6563 |
0 |
0.1983 |
| X4.X30 |
2.294 |
1.576 |
0.6533 |
0 |
0.1983 |
| X23.X31 |
4.792 |
1.999 |
0.6399 |
0 |
0.1942 |
| X26.X32 |
74.74 |
52.35 |
0.66 |
0 |
0.1942 |
| X12.X26 |
54.37 |
34.1 |
0.6607 |
0 |
0.1942 |
| X3.X27 |
1.88 |
0.6084 |
0.6492 |
0 |
0.1901 |
| X4.X26 |
17826 |
14139 |
0.6508 |
0 |
0.1901 |
| X6.X17 |
4.435 |
3.322 |
0.5213 |
0 |
0.1901 |
| X23 |
16.27 |
4.833 |
0.6442 |
0 |
0.186 |
| X3.X11 |
2.574 |
0.8233 |
0.6214 |
0 |
0.186 |
| X9 |
0.0888 |
0.0797 |
0.5994 |
0 |
0.186 |
| X4.X11 |
3.503 |
0.9729 |
0.4366 |
0 |
0.1818 |
| X7.X27 |
0.013 |
0.004 |
0.3416 |
0 |
0.1818 |
| X7 |
0.0964 |
0.0141 |
0.304 |
0 |
0.1818 |
| X14.X21 |
0.0269 |
0.022 |
-0.0251 |
0.4641 |
0.1818 |
| X24.X25 |
2829 |
1336 |
0.642 |
0 |
0.1777 |
| X8.X13 |
0.0495 |
0.0591 |
0.5811 |
0 |
0.1777 |
| X24.X27 |
3.43 |
1.147 |
0.4701 |
0 |
0.1777 |
| X4 |
19.29 |
4.301 |
0.3776 |
0 |
0.1777 |
| X25 |
107.3 |
33.6 |
0.6509 |
0 |
0.1736 |
| X6.X14 |
784.1 |
579 |
0.4934 |
0 |
0.1736 |
| X17.X32 |
6e-04 |
3e-04 |
0.091 |
0.008 |
0.1736 |
| X16.X30 |
6.229 |
10.56 |
0.6609 |
0 |
0.1694 |
| X22.X27 |
5e-04 |
4e-04 |
0.2369 |
0 |
0.1694 |
| X21.X29 |
0.0057 |
0.0062 |
0.5315 |
0 |
0.1612 |
| X7.X31 |
0.0283 |
0.0089 |
0.3703 |
0 |
0.1612 |
| X23.X24 |
428.4 |
195.8 |
0.6349 |
0 |
0.157 |
| X11.X26 |
162.3 |
114.5 |
0.6585 |
0 |
0.157 |
| X10.X26 |
60.93 |
88.95 |
0.6629 |
0 |
0.157 |
| X12.X27 |
0.0084 |
0.0022 |
0.2338 |
0 |
0.157 |
| X6.X21 |
13.24 |
10.27 |
0.4998 |
0 |
0.1529 |
| X4.X25 |
2121 |
977.1 |
0.6313 |
0 |
0.1488 |
| X17.X22 |
0 |
0 |
0.0946 |
0.0058 |
0.1488 |
| X5.X24 |
2407 |
995 |
0.6207 |
0 |
0.1446 |
| X16.X20 |
0.5923 |
0.9704 |
0.5723 |
0 |
0.1446 |
| X12 |
0.0628 |
0.0071 |
-0.0212 |
0.537 |
0.1446 |
| X12.X23 |
1.013 |
0.2943 |
0.6531 |
0 |
0.1405 |
| X13.X24 |
10.74 |
8.247 |
0.5678 |
0 |
0.1405 |
| X4.X10 |
0.9925 |
0.8985 |
0.6565 |
0 |
0.1364 |
| X6.X24 |
17436 |
11571 |
0.6355 |
0 |
0.1364 |
| X28 |
0.2543 |
0.1573 |
0.496 |
0 |
0.1364 |
| X17 |
0.007 |
0.003 |
-0.0427 |
0.2135 |
0.1364 |
| X3.X7 |
1.37 |
0.4347 |
0.6328 |
0 |
0.1322 |
| X17.X29 |
0.0019 |
0.0017 |
0.5143 |
0 |
0.1322 |
| X10.X17 |
3e-04 |
4e-04 |
0.563 |
0 |
0.1281 |
| X8.X31 |
0.0319 |
0.0225 |
0.5063 |
0 |
0.1281 |
| X14.X30 |
0.1351 |
0.0999 |
0.5632 |
0 |
0.124 |
| X23.X30 |
2.114 |
1.762 |
0.6604 |
0 |
0.1157 |
| X23.X32 |
1.374 |
0.533 |
0.632 |
0 |
0.1157 |
| X4.X20 |
0.2319 |
0.1406 |
0.4745 |
0 |
0.1157 |
| X14.X17 |
0.0092 |
0.0076 |
-0.0065 |
0.8502 |
0.1157 |
| X17.X30 |
8e-04 |
6e-04 |
0.5393 |
0 |
0.1157 |
| X3.X30 |
1.791 |
1.4 |
0.6564 |
0 |
0.1116 |
| X19.X26 |
31.32 |
37.14 |
0.5952 |
0 |
0.1116 |
| X9.X26 |
108.8 |
165.9 |
0.6534 |
0 |
0.1116 |
| X3.X24 |
369.2 |
147.6 |
0.6108 |
0 |
0.1033 |
| X16.X24 |
1091 |
1311 |
0.6247 |
0 |
0.1033 |
| X12.X21 |
0.0013 |
6e-04 |
-0.0664 |
0.0529 |
0.1033 |
| X16.X26 |
56499 |
138558 |
0.6328 |
0 |
0.1033 |
| X19.X31 |
0.0096 |
0.0105 |
0.4332 |
0 |
0.1033 |