Es un estudio realizado en Estados Unidos, que relaciona la latitud con la adqusiscion de cancer.

L<-read.csv("Datos2.csv", sep = ";")
j<-as.data.frame(L$Latitude)
library(ggplot2)
n<-c(L$State)
qplot(j, x = L$State) + xlab("ESTADOS") + ylab("LATITUD (°)") + scale_x_discrete(breaks = n) + scale_y_continuous(breaks = seq(15, 65, by = 5), limits = c(15,65)) 

library(ggplot2)
ggplot(L, aes(x = L$Latitude)) + geom_histogram(breaks=seq(20,51.2, by=5.2),binwidth =8,color="black", fill = "dark red") +scale_x_continuous(name = "LATITUD (°)",breaks = seq(20,51.2, by=5.2),limits=c(20,51.2)) +
scale_y_continuous(name = "ESTADOS ",limits=c(0,20),breaks = seq(0,20, by=1)) + ggtitle("HISTOGRAMA LATITUD") + theme(plot.title = element_text(hjust = 0.5)) + annotate("text", x = c(22.6,27.8,33,38.2,43.4,48.6), y = c(2,2,11,20,17,4), label =c ("2%","2%","20%","38%","32%","6%")) 

Se observa que la latitud que predomina en Estados unidos esta entre 35.6° y 40.8° que representa el 38% de los estados. Relacionando con el articulo de Australia se observa que son propensos a adquirir el cancer.

j<-as.data.frame(L$Cancer.diagnoses.per.thou)
library(ggplot2)
n<-c(L$State)
qplot(j, x = L$State) + xlab("ESTADOS") + ylab("DIAGNOSTICO DE CANCER POR CADA 1000 PERSONAS") + scale_x_discrete(breaks = n) + scale_y_continuous(breaks = seq(3, 7, by = 0.5), limits = c(3,7)) 

library(ggplot2)
ggplot(L, aes(x = L$Cancer.diagnoses.per.thou)) + geom_histogram(breaks=seq(3.5,7, by=0.5),binwidth =8,color="black", fill = "dark red") +scale_x_continuous(name = "DIAGNOSTICO DE CANCER POR CADA 1000 PERSONAS",breaks = seq(3.5,7, by=0.5),limits=c(3.5,7)) +
scale_y_continuous(name = "ESTADOS ",limits=c(0,19),breaks = seq(0,19, by=1)) + ggtitle("HISTOGRAMA DIAGNOSTICO DE CANCER POR CADA 1000 PERSONAS") + theme(plot.title = element_text(hjust = 0.5)) + annotate("text", x=c(3.75, 4.25,4.75,5.25,5.75,6.25,6.75),y=c(2,5,13,18,14,4,2),label=c("2%", "7.9%","23.5%","33.33%","27.4%","5.9%","2%"))

j<-as.data.frame(L$Pop...65.yo..)
library(ggplot2)
n<-c(L$State)
qplot(j, x = L$State) + xlab("ESTADOS") + ylab("POBLACIÓN MAYOR A 65 AÑOS") + scale_x_discrete(breaks = n) + scale_y_continuous(breaks = seq(7, 18, by = 0.5), limits = c(7,18)) 

ggplot(L,aes(x= L$Pop...65.yo..))+geom_histogram(breaks=seq(7,19, by=2),binwidth =8,color="black", fill = "dark red")+scale_x_continuous(name = "POBLACIÓN MAYOR A 65 AÑOS CON CANCER (%)",breaks = seq(7,19, by=2),limits=c(7,19)) + scale_y_continuous(name = "ESTADOS ",limits=c(0,22),breaks = seq(0,22, by=1)) + ggtitle("HISTOGRAMA POBLACIÓN MAYOR A 65 AÑOS CON CANCER") + theme(plot.title = element_text(hjust = 0.5))  + annotate("text", x=c(8,10,12,14,16,18),y=c(4,7,11,21,10,4),label=c("5.9%","11.8%","20%","39%","17.6%","5.9%"))

LS0tDQp0aXRsZTogIlBBUkNJQUwgMSINCm91dHB1dDogaHRtbF9ub3RlYm9vaw0KLS0tDQpFcyB1biBlc3R1ZGlvIHJlYWxpemFkbyBlbiBFc3RhZG9zIFVuaWRvcywgcXVlIHJlbGFjaW9uYSBsYSBsYXRpdHVkIGNvbiBsYSBhZHF1c2lzY2lvbiBkZSBjYW5jZXIuDQoNCg0KYGBge3J9DQpMPC1yZWFkLmNzdigiRGF0b3MyLmNzdiIsIHNlcCA9ICI7Iiwgc3RyaW5nc0FzRmFjdG9ycyA9IEYsIGhlYWRlcj0gVFJVRSkNCg0KajwtYXMuZGF0YS5mcmFtZShMJExhdGl0dWRlKQ0KbGlicmFyeShnZ3Bsb3QyKQ0KbjwtYyhMJFN0YXRlKQ0KcXBsb3QoaiwgeCA9IEwkU3RhdGUpICsgeGxhYigiRVNUQURPUyIpICsgeWxhYigiTEFUSVRVRCAosCkiKSArIHNjYWxlX3hfZGlzY3JldGUoYnJlYWtzID0gbikgKyBzY2FsZV95X2NvbnRpbnVvdXMoYnJlYWtzID0gc2VxKDE1LCA2NSwgYnkgPSA1KSwgbGltaXRzID0gYygxNSw2NSkpIA0KYGBgDQoNCmBgYHtyfQ0KbGlicmFyeShnZ3Bsb3QyKQ0KDQpnZ3Bsb3QoTCwgYWVzKHggPSBMJExhdGl0dWRlKSkgKyBnZW9tX2hpc3RvZ3JhbShicmVha3M9c2VxKDIwLDUxLjIsIGJ5PTUuMiksYmlud2lkdGggPTgsY29sb3I9ImJsYWNrIiwgZmlsbCA9ICJkYXJrIHJlZCIpICtzY2FsZV94X2NvbnRpbnVvdXMobmFtZSA9ICJMQVRJVFVEICiwKSIsYnJlYWtzID0gc2VxKDIwLDUxLjIsIGJ5PTUuMiksbGltaXRzPWMoMjAsNTEuMikpICsNCnNjYWxlX3lfY29udGludW91cyhuYW1lID0gIkVTVEFET1MgIixsaW1pdHM9YygwLDIwKSxicmVha3MgPSBzZXEoMCwyMCwgYnk9MSkpICsgZ2d0aXRsZSgiSElTVE9HUkFNQSBMQVRJVFVEIikgKyB0aGVtZShwbG90LnRpdGxlID0gZWxlbWVudF90ZXh0KGhqdXN0ID0gMC41KSkgKyBhbm5vdGF0ZSgidGV4dCIsIHggPSBjKDIyLjYsMjcuOCwzMywzOC4yLDQzLjQsNDguNiksIHkgPSBjKDIsMiwxMSwyMCwxNyw0KSwgbGFiZWwgPWMgKCIyJSIsIjIlIiwiMjAlIiwiMzglIiwiMzIlIiwiNiUiKSkgDQpgYGANClNlIG9ic2VydmEgcXVlIGxhIGxhdGl0dWQgcXVlIHByZWRvbWluYSBlbiBFc3RhZG9zIHVuaWRvcyBlc3RhIGVudHJlIDM1LjawIHkgNDAuOLAgcXVlIHJlcHJlc2VudGEgZWwgMzglIGRlIGxvcyBlc3RhZG9zLiBSZWxhY2lvbmFuZG8gY29uIGVsIGFydGljdWxvIGRlIEF1c3RyYWxpYSBzZSBvYnNlcnZhIHF1ZSBzb24gcHJvcGVuc29zIGEgYWRxdWlyaXIgZWwgY2FuY2VyLg0KYGBge3J9DQpqPC1hcy5kYXRhLmZyYW1lKEwkQ2FuY2VyLmRpYWdub3Nlcy5wZXIudGhvdSkNCmxpYnJhcnkoZ2dwbG90MikNCm48LWMoTCRTdGF0ZSkNCnFwbG90KGosIHggPSBMJFN0YXRlKSArIHhsYWIoIkVTVEFET1MiKSArIHlsYWIoIkRJQUdOT1NUSUNPIERFIENBTkNFUiBQT1IgQ0FEQSAxMDAwIFBFUlNPTkFTIikgKyBzY2FsZV94X2Rpc2NyZXRlKGJyZWFrcyA9IG4pICsgc2NhbGVfeV9jb250aW51b3VzKGJyZWFrcyA9IHNlcSgzLCA3LCBieSA9IDAuNSksIGxpbWl0cyA9IGMoMyw3KSkgDQpgYGANCmBgYHtyfQ0KbGlicmFyeShnZ3Bsb3QyKQ0KDQpnZ3Bsb3QoTCwgYWVzKHggPSBMJENhbmNlci5kaWFnbm9zZXMucGVyLnRob3UpKSArIGdlb21faGlzdG9ncmFtKGJyZWFrcz1zZXEoMy41LDcsIGJ5PTAuNSksYmlud2lkdGggPTgsY29sb3I9ImJsYWNrIiwgZmlsbCA9ICJkYXJrIHJlZCIpICtzY2FsZV94X2NvbnRpbnVvdXMobmFtZSA9ICJESUFHTk9TVElDTyBERSBDQU5DRVIgUE9SIENBREEgMTAwMCBQRVJTT05BUyIsYnJlYWtzID0gc2VxKDMuNSw3LCBieT0wLjUpLGxpbWl0cz1jKDMuNSw3KSkgKw0Kc2NhbGVfeV9jb250aW51b3VzKG5hbWUgPSAiRVNUQURPUyAiLGxpbWl0cz1jKDAsMTkpLGJyZWFrcyA9IHNlcSgwLDE5LCBieT0xKSkgKyBnZ3RpdGxlKCJISVNUT0dSQU1BIERJQUdOT1NUSUNPIERFIENBTkNFUiBQT1IgQ0FEQSAxMDAwIFBFUlNPTkFTIikgKyB0aGVtZShwbG90LnRpdGxlID0gZWxlbWVudF90ZXh0KGhqdXN0ID0gMC41KSkgKyBhbm5vdGF0ZSgidGV4dCIsIHg9YygzLjc1LCA0LjI1LDQuNzUsNS4yNSw1Ljc1LDYuMjUsNi43NSkseT1jKDIsNSwxMywxOCwxNCw0LDIpLGxhYmVsPWMoIjIlIiwgIjcuOSUiLCIyMy41JSIsIjMzLjMzJSIsIjI3LjQlIiwiNS45JSIsIjIlIikpDQpgYGANCmBgYHtyfQ0KajwtYXMuZGF0YS5mcmFtZShMJFBvcC4uLjY1LnlvLi4pDQpsaWJyYXJ5KGdncGxvdDIpDQpuPC1jKEwkU3RhdGUpDQpxcGxvdChqLCB4ID0gTCRTdGF0ZSkgKyB4bGFiKCJFU1RBRE9TIikgKyB5bGFiKCJQT0JMQUNJ004gTUFZT1IgQSA2NSBB0U9TIENPTiBDQU5DRVIgKCUpIikgKyBzY2FsZV94X2Rpc2NyZXRlKGJyZWFrcyA9IG4pICsgc2NhbGVfeV9jb250aW51b3VzKGJyZWFrcyA9IHNlcSg3LCAxOCwgYnkgPSAwLjUpLCBsaW1pdHMgPSBjKDcsMTgpKSANCmBgYA0KYGBge3J9DQpnZ3Bsb3QoTCxhZXMoeD0gTCRQb3AuLi42NS55by4uKSkrZ2VvbV9oaXN0b2dyYW0oYnJlYWtzPXNlcSg3LDE5LCBieT0yKSxiaW53aWR0aCA9OCxjb2xvcj0iYmxhY2siLCBmaWxsID0gImRhcmsgcmVkIikrc2NhbGVfeF9jb250aW51b3VzKG5hbWUgPSAiUE9CTEFDSdNOIE1BWU9SIEEgNjUgQdFPUyBDT04gQ0FOQ0VSICglKSIsYnJlYWtzID0gc2VxKDcsMTksIGJ5PTIpLGxpbWl0cz1jKDcsMTkpKSArIHNjYWxlX3lfY29udGludW91cyhuYW1lID0gIkVTVEFET1MgIixsaW1pdHM9YygwLDIyKSxicmVha3MgPSBzZXEoMCwyMiwgYnk9MSkpICsgZ2d0aXRsZSgiSElTVE9HUkFNQSBQT0JMQUNJ004gTUFZT1IgQSA2NSBB0U9TIENPTiBDQU5DRVIiKSArIHRoZW1lKHBsb3QudGl0bGUgPSBlbGVtZW50X3RleHQoaGp1c3QgPSAwLjUpKSAgKyBhbm5vdGF0ZSgidGV4dCIsIHg9Yyg4LDEwLDEyLDE0LDE2LDE4KSx5PWMoNCw3LDExLDIxLDEwLDQpLGxhYmVsPWMoIjUuOSUiLCIxMS44JSIsIjIwJSIsIjM5JSIsIjE3LjYlIiwiNS45JSIpKQ0KYGBgDQoNCg==