Radar Plots
library(fmsb)
par(mfrow = c(1,2),xpd = TRUE,pty = "s",mar = c(1,1,1,1))
mNames <- names(cp$cpuElapsedTimes)
classRanks <- c(pr$minMaxMetrics$BER[1],pr$minMaxMetrics$ACC[2],pr$minMaxMetrics$AUC[2],pr$minMaxMetrics$SEN[2],pr$minMaxMetrics$SPE[2],min(cp$cpuElapsedTimes))
classRanks <- rbind(classRanks,c(pr$minMaxMetrics$BER[2],0,0,0,0,max(cp$cpuElapsedTimes)))
classRanks <- as.data.frame(rbind(classRanks,cbind(t(pr$metrics[c("BER","ACC","AUC","SEN","SPE"),mNames]),cp$cpuElapsedTimes)))
colnames(classRanks) <- c("BER","ACC","AUC","SEN","SPE","CPU")
classRanks$BER <- -classRanks$BER
classRanks$CPU <- -classRanks$CPU
colors_border = c( rgb(1.0,0.0,0.0,1.0), rgb(0.0,1.0,0.0,1.0) , rgb(0.0,0.0,1.0,1.0), rgb(0.2,0.2,0.0,1.0), rgb(0.0,1.0,1.0,1.0), rgb(1.0,0.0,1.0,1.0), rgb(0.0,0.0,0.0,1.0) )
colors_in = c( rgb(1.0,0.0,0.0,0.05), rgb(0.0,1.0,0.0,0.05) , rgb(0.0,0.0,1.0,0.05),rgb(1.0,1.0,0.0,0.05), rgb(0.0,1.0,1.0,0.05) , rgb(1.0,0.0,1.0,0.05), rgb(0.0,0.0,0.0,0.05) )
radarchart(classRanks,axistype = 0,maxmin = T,pcol = colors_border,pfcol = colors_in,plwd = c(6,2,2,2,2,2,2),plty = 1, cglcol = "grey", cglty = 1,axislabcol = "black",cglwd = 0.8, vlcex = 0.5 ,title = "Prediction Model")
legend("topleft",legend = rownames(classRanks[-c(1,2),]),bty = "n",pch = 20,col = colors_in,text.col = colors_border,cex = 0.5,pt.cex = 2)
filnames <- c("BSWiMS","LASSO","RF.ref","IDI","t-test","Kendall","mRMR")
filterRanks <- c(pr$minMaxMetrics$BER[1],pr$minMaxMetrics$ACC[2],pr$minMaxMetrics$AUC[2],pr$minMaxMetrics$SEN[2],pr$minMaxMetrics$SPE[2],max(cp$jaccard),min(cp$featsize));
filterRanks <- rbind(filterRanks,c(pr$minMaxMetrics$BER[2],0,0,0,0,min(cp$jaccard),max(cp$featsize)));
filterRanks <- as.data.frame(rbind(filterRanks,cbind(t(pr$metrics_filter[c("BER","ACC","AUC","SEN","SPE"),filnames]),cp$jaccard[filnames],cp$featsize[filnames])));
colnames(filterRanks) <- c("BER","ACC","AUC","SEN","SPE","Jaccard","SIZE")
filterRanks$BER <- -filterRanks$BER
filterRanks$SIZE <- -filterRanks$SIZE
colors_border = c( rgb(1.0,0.0,0.0,1.0), rgb(0.0,1.0,0.0,1.0) , rgb(0.0,0.0,1.0,1.0), rgb(0.2,0.2,0.0,1.0), rgb(0.0,1.0,1.0,1.0), rgb(1.0,0.0,1.0,1.0), rgb(0.0,0.0,0.0,1.0) )
colors_in = c( rgb(1.0,0.0,0.0,0.05), rgb(0.0,1.0,0.0,0.05) , rgb(0.0,0.0,1.0,0.05),rgb(1.0,1.0,0.0,0.05), rgb(0.0,1.0,1.0,0.05) , rgb(1.0,0.0,1.0,0.05), rgb(0.0,0.0,0.0,0.05) )
radarchart(filterRanks,axistype = 0,maxmin = T,pcol = colors_border,pfcol = colors_in,plwd = c(6,2,2,2,2,2,2),plty = 1, cglcol = "grey", cglty = 1,axislabcol = "black",cglwd = 0.8, vlcex = 0.6,title = "Filter Method" )
legend("topleft",legend = rownames(filterRanks[-c(1,2),]),bty = "n",pch = 20,col = colors_in,text.col = colors_border,cex = 0.5,pt.cex = 2)

detach("package:fmsb", unload=TRUE)
par(mfrow = c(1,1))
par(op)
Feature Analysis
rm <- rowMeans(cp$featureSelectionFrequency)
selFrequency <- cp$featureSelectionFrequency[rm > 0.1,]
gplots::heatmap.2(selFrequency,trace = "none",mar = c(10,10),main = "Features",cexRow = 0.5)

topFeat <- min(ncol(BSWiMSMODEL$bagging$formulaNetwork),30);
gplots::heatmap.2(BSWiMSMODEL$bagging$formulaNetwork[1:topFeat,1:topFeat],trace="none",mar = c(10,10),main = "B:SWiMS Formula Network")

pander::pander(summary(BSWiMSMODEL$bagging$bagged.model,caption="Colon",round = 3))
coefficients:
Table continues below
| V11 |
4.595 |
21.15 |
99.03 |
463.7 |
0.7452 |
0.6839 |
| V45 |
4.262 |
13.57 |
70.96 |
371 |
0.6394 |
0.7201 |
| V36 |
-2.544 |
0.02743 |
0.07854 |
0.2249 |
0.6587 |
0.696 |
| V12 |
0.2103 |
1.13 |
1.234 |
1.348 |
0.7404 |
0.7173 |
| V10 |
0.2613 |
1.161 |
1.299 |
1.452 |
0.6971 |
0.6807 |
| V46 |
0.36 |
1.224 |
1.433 |
1.678 |
0.6106 |
0.7452 |
| V44 |
0.1146 |
1.063 |
1.121 |
1.183 |
0.5913 |
0.709 |
| V35 |
-0.1617 |
0.7883 |
0.8507 |
0.9181 |
0.5865 |
0.7044 |
| V47 |
2.171 |
3.096 |
8.768 |
24.83 |
0.6202 |
0.7096 |
| V37 |
-0.1239 |
0.8304 |
0.8835 |
0.94 |
0.6346 |
0.7288 |
| V9 |
0.105 |
1.051 |
1.111 |
1.174 |
0.6923 |
0.7178 |
| V48 |
0.6813 |
1.353 |
1.977 |
2.887 |
0.6875 |
0.7418 |
| V49 |
1.332 |
1.802 |
3.79 |
7.973 |
0.6827 |
0.7425 |
| V4 |
1.292 |
1.757 |
3.642 |
7.548 |
0.6058 |
0.7433 |
| V51 |
1.938 |
2.295 |
6.945 |
21.02 |
0.6683 |
0.768 |
| V1 |
0.4892 |
1.228 |
1.631 |
2.166 |
0.601 |
0.7138 |
| V43 |
0.3014 |
1.135 |
1.352 |
1.61 |
0.5865 |
0.7447 |
| V34 |
-0.04082 |
0.9372 |
0.96 |
0.9833 |
0.5865 |
0.6982 |
| V58 |
1.906 |
2.079 |
6.726 |
21.76 |
0.5721 |
0.7159 |
| V54 |
2.379 |
2.478 |
10.79 |
46.99 |
0.5385 |
0.7175 |
| V13 |
0.0349 |
1.013 |
1.036 |
1.058 |
0.6683 |
0.7103 |
| V59 |
2.896 |
2.926 |
18.1 |
112 |
0.5 |
0.7175 |
| V42 |
0.03723 |
1.014 |
1.038 |
1.063 |
0.5577 |
0.7134 |
| V21 |
0.1165 |
1.043 |
1.124 |
1.21 |
0.6298 |
0.7221 |
| V23 |
0.07047 |
1.025 |
1.073 |
1.123 |
0.5577 |
0.7298 |
| V22 |
0.08959 |
1.031 |
1.094 |
1.16 |
0.5865 |
0.7281 |
| V8 |
0.02966 |
1.01 |
1.03 |
1.05 |
0.6346 |
0.7019 |
| V2 |
0.1566 |
1.054 |
1.17 |
1.298 |
0.5577 |
0.7078 |
| V5 |
0.2066 |
1.068 |
1.23 |
1.416 |
0.625 |
0.7169 |
| V52 |
5.908 |
6.319 |
368 |
21432 |
0.6394 |
0.7419 |
| V20 |
0.09366 |
1.028 |
1.098 |
1.173 |
0.6394 |
0.7223 |
| V24 |
0.02498 |
1.007 |
1.025 |
1.044 |
0.5481 |
0.7085 |
| V3 |
0.1461 |
1.027 |
1.157 |
1.304 |
0.5721 |
0.7139 |
| V19 |
0.002362 |
1 |
1.002 |
1.004 |
0.5433 |
0.7019 |
Table continues below
| V11 |
0.7747 |
0.7418 |
0.6814 |
0.7736 |
0.1357 |
0.7796 |
| V45 |
0.7588 |
0.6446 |
0.7167 |
0.7574 |
0.1187 |
0.6981 |
| V36 |
0.7601 |
0.6516 |
0.6957 |
0.7586 |
0.0997 |
0.5923 |
| V12 |
0.7788 |
0.736 |
0.7147 |
0.7773 |
0.09346 |
0.7177 |
| V10 |
0.7455 |
0.6961 |
0.6765 |
0.7436 |
0.08644 |
0.7239 |
| V46 |
0.7704 |
0.6124 |
0.7435 |
0.7693 |
0.09342 |
0.6728 |
| V44 |
0.7192 |
0.5924 |
0.7057 |
0.7172 |
0.07616 |
0.5467 |
| V35 |
0.7467 |
0.5775 |
0.704 |
0.7443 |
0.07429 |
0.3676 |
| V47 |
0.7421 |
0.6201 |
0.7058 |
0.7398 |
0.0781 |
0.5263 |
| V37 |
0.7798 |
0.6258 |
0.7268 |
0.779 |
0.07006 |
0.5342 |
| V9 |
0.7526 |
0.6929 |
0.7153 |
0.7513 |
0.06188 |
0.5825 |
| V48 |
0.7566 |
0.6877 |
0.7402 |
0.755 |
0.05789 |
0.6024 |
| V49 |
0.7622 |
0.6832 |
0.7409 |
0.7606 |
0.05863 |
0.6922 |
| V4 |
0.7668 |
0.6053 |
0.7418 |
0.7659 |
0.05107 |
0.5622 |
| V51 |
0.7983 |
0.6664 |
0.7675 |
0.7968 |
0.05844 |
0.5693 |
| V1 |
0.7522 |
0.6027 |
0.711 |
0.7493 |
0.04972 |
0.4575 |
| V43 |
0.7585 |
0.5834 |
0.7432 |
0.7572 |
0.05707 |
0.6359 |
| V34 |
0.7404 |
0.5769 |
0.6974 |
0.7384 |
0.04577 |
0.3506 |
| V58 |
0.7465 |
0.5711 |
0.7134 |
0.7442 |
0.04171 |
0.4619 |
| V54 |
0.7449 |
0.5331 |
0.7149 |
0.7419 |
0.04364 |
0.327 |
| V13 |
0.7404 |
0.6658 |
0.7082 |
0.7389 |
0.04776 |
0.5046 |
| V59 |
0.7492 |
0.4893 |
0.7149 |
0.7454 |
0.03749 |
0.5232 |
| V42 |
0.7256 |
0.5485 |
0.7116 |
0.722 |
0.04453 |
0.4722 |
| V21 |
0.7544 |
0.6239 |
0.7198 |
0.7525 |
0.0429 |
0.6495 |
| V23 |
0.7505 |
0.544 |
0.7277 |
0.7478 |
0.04057 |
0.5075 |
| V22 |
0.7691 |
0.5782 |
0.726 |
0.7669 |
0.03927 |
0.4275 |
| V8 |
0.7019 |
0.6304 |
0.6986 |
0.6986 |
0.03682 |
0.4215 |
| V2 |
0.7276 |
0.5563 |
0.7044 |
0.7242 |
0.03784 |
0.3209 |
| V5 |
0.7464 |
0.622 |
0.7143 |
0.7447 |
0.03636 |
0.4945 |
| V52 |
0.7609 |
0.6394 |
0.7402 |
0.7599 |
0.04074 |
0.4149 |
| V20 |
0.7457 |
0.6362 |
0.7199 |
0.7433 |
0.03539 |
0.6399 |
| V24 |
0.7513 |
0.5265 |
0.7068 |
0.7512 |
0.03198 |
0.3833 |
| V3 |
0.7452 |
0.5698 |
0.7112 |
0.7437 |
0.02657 |
0.3737 |
| V19 |
0.7067 |
0.5376 |
0.6986 |
0.7025 |
0.01916 |
0.1791 |
| V11 |
5.834 |
6.13 |
18 |
| V45 |
5.05 |
5.623 |
15.8 |
| V36 |
4.74 |
4.478 |
23.85 |
| V12 |
4.656 |
5.534 |
1 |
| V10 |
4.589 |
5.698 |
2.1 |
| V46 |
4.474 |
5.339 |
1.45 |
| V44 |
4.169 |
4.123 |
0.75 |
| V35 |
4.159 |
2.723 |
1.95 |
| V47 |
4.088 |
4.084 |
9.8 |
| V37 |
3.914 |
4 |
1 |
| V9 |
3.703 |
4.552 |
0.65 |
| V48 |
3.524 |
4.645 |
2.25 |
| V49 |
3.512 |
5.493 |
2.45 |
| V4 |
3.476 |
4.442 |
2.45 |
| V51 |
3.43 |
4.33 |
1 |
| V1 |
3.381 |
3.512 |
0.65 |
| V43 |
3.376 |
4.896 |
1.8 |
| V34 |
3.334 |
2.576 |
0.9 |
| V58 |
3.182 |
3.512 |
0.55 |
| V54 |
3.169 |
2.401 |
0.85 |
| V13 |
3.159 |
3.762 |
0.4 |
| V59 |
3.115 |
4.027 |
0.85 |
| V42 |
3.076 |
3.527 |
0.65 |
| V21 |
3.071 |
4.941 |
1.95 |
| V23 |
3.015 |
3.789 |
0.95 |
| V22 |
2.982 |
3.16 |
1.35 |
| V8 |
2.969 |
3.246 |
0.35 |
| V2 |
2.938 |
2.39 |
0.45 |
| V5 |
2.871 |
3.778 |
0.8 |
| V52 |
2.849 |
3.121 |
3.2 |
| V20 |
2.8 |
4.87 |
1.9 |
| V24 |
2.676 |
2.828 |
0.55 |
| V3 |
2.395 |
2.807 |
0.5 |
| V19 |
2.212 |
1.295 |
0.15 |
- Accuracy: 0.8077
- tAUC: 0.8068
- sensitivity: 0.8198
- specificity: 0.7938
bootstrap:
hm <- heatMaps(Outcome = theOutcome,data = theData[,c(theOutcome,rownames(selFrequency))],title = "Heat Map",Scale = TRUE,hCluster = "col",cexRow = 0.25,cexCol = 0.75,srtCol = 45)

vlist <- rownames(selFrequency)
vlist <- cbind(vlist,vlist)
univ <- univariateRankVariables(variableList = vlist,formula = paste(theOutcome,"~1"),Outcome = theOutcome,data = theData,type = "LOGIT",rankingTest = "zIDI",uniType = "Binary")[,c("controlMean","controlStd","caseMean","caseStd","ROCAUC","WilcoxRes.p")]
cnames <- colnames(univ);
univ <- cbind(univ,rm[rownames(univ)])
colnames(univ) <- c(cnames,"Frequency")
univ <- univ[order(-univ[,5]),]
pander::pander(univ[1:topFeat,],caption = "Features",round = 4)
Features (continued below)
| V11 |
0.1747 |
0.1134 |
0.2896 |
0.1254 |
0.7811 |
0 |
| V12 |
0.1916 |
0.1347 |
0.3015 |
0.1241 |
0.7429 |
0 |
| V10 |
0.1593 |
0.1132 |
0.251 |
0.1374 |
0.7327 |
0 |
| V49 |
0.0384 |
0.0304 |
0.0637 |
0.0364 |
0.7313 |
0 |
| V9 |
0.1374 |
0.0999 |
0.2135 |
0.1222 |
0.7308 |
0 |
| V48 |
0.0695 |
0.0482 |
0.1106 |
0.0671 |
0.7063 |
0 |
| V13 |
0.2262 |
0.1381 |
0.3144 |
0.1307 |
0.7047 |
0 |
| V51 |
0.0123 |
0.0086 |
0.0194 |
0.0135 |
0.6994 |
0 |
| V47 |
0.0945 |
0.0678 |
0.1469 |
0.0945 |
0.6974 |
0 |
| V52 |
0.0105 |
0.0071 |
0.016 |
0.0108 |
0.688 |
0 |
| V46 |
0.1169 |
0.0938 |
0.1988 |
0.1514 |
0.6871 |
0 |
| V45 |
0.1423 |
0.0957 |
0.2452 |
0.1741 |
0.6727 |
0 |
| V4 |
0.0414 |
0.0312 |
0.0648 |
0.0545 |
0.6652 |
0 |
| V36 |
0.4607 |
0.2623 |
0.3186 |
0.2484 |
0.6652 |
0 |
| V5 |
0.062 |
0.0472 |
0.0867 |
0.0598 |
0.6537 |
2e-04 |
| V1 |
0.0225 |
0.0147 |
0.035 |
0.0271 |
0.6523 |
1e-04 |
| V44 |
0.1751 |
0.1074 |
0.2481 |
0.1444 |
0.6511 |
1e-04 |
| V21 |
0.5423 |
0.2488 |
0.6674 |
0.2524 |
0.6445 |
1e-04 |
| V35 |
0.4555 |
0.2612 |
0.3376 |
0.2455 |
0.6415 |
6e-04 |
| V8 |
0.1176 |
0.0798 |
0.1498 |
0.0872 |
0.641 |
8e-04 |
| V43 |
0.2118 |
0.1303 |
0.2769 |
0.1398 |
0.6409 |
2e-04 |
| V37 |
0.4173 |
0.243 |
0.317 |
0.2281 |
0.6281 |
6e-04 |
| V6 |
0.0962 |
0.065 |
0.1119 |
0.0526 |
0.6246 |
0.0018 |
| V20 |
0.5002 |
0.2594 |
0.6179 |
0.2541 |
0.6236 |
9e-04 |
| V2 |
0.0303 |
0.024 |
0.0455 |
0.0378 |
0.6228 |
0.0015 |
| V50 |
0.0178 |
0.0126 |
0.0227 |
0.0142 |
0.6218 |
0.003 |
| V3 |
0.036 |
0.0291 |
0.0507 |
0.044 |
0.6165 |
0.006 |
| V14 |
0.269 |
0.1663 |
0.3207 |
0.1597 |
0.6147 |
0.0058 |
| V22 |
0.5693 |
0.2606 |
0.6723 |
0.2428 |
0.6137 |
0.0028 |
| V58 |
0.0067 |
0.0048 |
0.0091 |
0.0075 |
0.5984 |
0.0118 |
| V11 |
0.99 |
| V12 |
0.95 |
| V10 |
0.7783 |
| V49 |
0.8667 |
| V9 |
0.8117 |
| V48 |
0.7817 |
| V13 |
0.7133 |
| V51 |
0.745 |
| V47 |
0.7167 |
| V52 |
0.82 |
| V46 |
0.675 |
| V45 |
0.815 |
| V4 |
0.7717 |
| V36 |
0.91 |
| V5 |
0.6883 |
| V1 |
0.6867 |
| V44 |
0.6883 |
| V21 |
0.7617 |
| V35 |
0.615 |
| V8 |
0.5983 |
| V43 |
0.61 |
| V37 |
0.7017 |
| V6 |
0.54 |
| V20 |
0.625 |
| V2 |
0.545 |
| V50 |
0.5217 |
| V3 |
0.5317 |
| V14 |
0.5667 |
| V22 |
0.6583 |
| V58 |
0.5 |