ALFF-CBF SURF COUPLING

# read in packages
library(plyr)
## Warning: package 'plyr' was built under R version 3.2.5
# read in demos
alffCbf_subjDemos <- read.csv("/data/jux/BBL/projects/coupling/subjectsLists/n882_alff_cbf_finalSample.csv")
alffCbf_subjDemos$sex <- as.factor(alffCbf_subjDemos$sex)

# get all files
setwd("/data/jux/BBL/projects/coupling/couplingSurfaceMaps/alffCbf/lh/stat")
lh_alffCbf_files = list.files(pattern="*.asc")
lh_alffCbf_data = do.call(rbind, lapply(lh_alffCbf_files, function(x) read.table(x, stringsAsFactors = FALSE)))
lh_alffCbf_coupling <- as.data.frame(lh_alffCbf_data$V5)
lh_alffCbf_coupling_n <- t(as.data.frame(split(lh_alffCbf_coupling,1:882)))

setwd("/data/jux/BBL/projects/coupling/couplingSurfaceMaps/alffCbf/rh/stat")
rh_alffCbf_files = list.files(pattern="*.asc")
rh_alffCbf_data = do.call(rbind, lapply(rh_alffCbf_files, function(x) read.table(x, stringsAsFactors = FALSE)))
rh_alffCbf_coupling <- as.data.frame(rh_alffCbf_data$V5)
rh_alffCbf_coupling_n <- t(as.data.frame(split(rh_alffCbf_coupling,1:882)))

# run model
for (i in 1:10242) {
  lh_alffCbf_agemodel <- lm(lh_alffCbf_coupling_n[,i] ~ ageAtScan1, data=alffCbf_subjDemos)
  lh_alffCbf_ageSexmodel <- lm(lh_alffCbf_coupling_n[,i] ~ ageAtScan1 + sex, data=alffCbf_subjDemos)
  lh_alffCbf_ageSex_qaModel <- lm(lh_alffCbf_coupling_n[,i] ~ ageAtScan1 + sex + pcaslRelMeanRMSMotion + restRelMeanRMSMotion, data=alffCbf_subjDemos)
}

for (i in 1:10242) {
  rh_alffCbf_agemodel <- lm(rh_alffCbf_coupling_n[,i] ~ ageAtScan1, data=alffCbf_subjDemos)
  rh_alffCbf_ageSexmodel <- lm(rh_alffCbf_coupling_n[,i] ~ ageAtScan1 + sex, data=alffCbf_subjDemos)
  rh_alffCbf_ageSex_qaModel <- lm(rh_alffCbf_coupling_n[,i] ~ ageAtScan1 + sex + pcaslRelMeanRMSMotion + restRelMeanRMSMotion, data=alffCbf_subjDemos)
}

# print out summary results
#summary(lh_alffCbf_agemodel)
#summary(lh_alffCbf_ageSexmodel)
summary(lh_alffCbf_ageSex_qaModel)
## 
## Call:
## lm(formula = lh_alffCbf_coupling_n[, i] ~ ageAtScan1 + sex + 
##     pcaslRelMeanRMSMotion + restRelMeanRMSMotion, data = alffCbf_subjDemos)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -11.2812  -2.6083  -0.8098   2.4742  12.7862 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           -0.58528    0.72526  -0.807   0.4199    
## ageAtScan1             0.17556    0.03605   4.870 1.32e-06 ***
## sex2                   0.09133    0.23522   0.388   0.6979    
## pcaslRelMeanRMSMotion  7.43805    3.40535   2.184   0.0292 *  
## restRelMeanRMSMotion  -0.01980    3.31072  -0.006   0.9952    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.449 on 877 degrees of freedom
## Multiple R-squared:  0.02819,    Adjusted R-squared:  0.02376 
## F-statistic:  6.36 on 4 and 877 DF,  p-value: 4.785e-05
#summary(rh_alffCbf_agemodel)
#summary(rh_alffCbf_ageSexmodel)
summary(rh_alffCbf_ageSex_qaModel)
## 
## Call:
## lm(formula = rh_alffCbf_coupling_n[, i] ~ ageAtScan1 + sex + 
##     pcaslRelMeanRMSMotion + restRelMeanRMSMotion, data = alffCbf_subjDemos)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -14.7743  -2.3485  -0.8075   1.7692  17.3077 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           -0.68322    0.87132  -0.784    0.433    
## ageAtScan1             0.17523    0.04331   4.046 5.67e-05 ***
## sex2                   0.18044    0.28259   0.639    0.523    
## pcaslRelMeanRMSMotion  0.84702    4.09119   0.207    0.836    
## restRelMeanRMSMotion   1.94965    3.97750   0.490    0.624    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.144 on 877 degrees of freedom
## Multiple R-squared:  0.01915,    Adjusted R-squared:  0.01468 
## F-statistic: 4.281 on 4 and 877 DF,  p-value: 0.00195