1 Introduction

2 Stake holder

Prospective students for the mathematics course.

3 Research Questions

4 Preparation

library(tidyverse)
unit <- read.csv("Student_data_advanced.csv")

5 Data content

unit %>% head()
##   Student.Identifier Year Domestic.Intl Gender      Mode   Age
## 1          289703333 2014             I      F Part time 19-21
## 2          188174541 2017             D      M Full time 19-21
## 3           41036478 2016             D      F Full time 19-21
## 4           29921215 2014             D      F Full time 19-21
## 5          198560236 2013             D      F Full time 19-21
## 6          268800920 2012             D      F Full time 19-21
##   Unit.of.Study Unit.of.Study.Level Unit.of.Study.Grade
## 1        Unit B          Mainstream                  CR
## 2        Unit E          Mainstream                  DI
## 3        Unit A          Mainstream                  DI
## 4        Unit E          Mainstream                  PS
## 5        Unit C          Mainstream                  PS
## 6        Unit B          Mainstream                  PS

This data set contains 64,486 anonymised student grades for 14 first year Maths units of study from 2012 to 2017. The data provided is real data from the University’s student system and has been provided by Institutional Analytics and Planning, the department of the University responsible for student data reporting and analysis.

6 Analysis

6.1 Difficulty difference

unit %>% 
  ggplot(aes(Unit.of.Study, fill = Unit.of.Study.Grade)) +
  geom_bar() +
  theme(axis.text.x = element_text(angle = 90, hjust = 1))

unit %>% 
  ggplot(aes(Unit.of.Study, fill = Unit.of.Study.Grade)) +
  geom_bar(position = "fill") +
  theme(axis.text.x = element_text(angle = 90, hjust = 1))

unit %>% 
  ggplot(aes(Year)) +
  geom_bar()

6.2 Grade difference

unit %>% 
  ggplot(aes(Unit.of.Study.Level, fill = Unit.of.Study.Grade)) +
  geom_bar(position = "fill")

7 Sample size of each study level

unit$Unit.of.Study.Level %>% table()
## .
##    Advanced Fundamental  Mainstream 
##        5264       17671       41551

7.1 Mode difference by age

unit %>% 
  ggplot(aes(Age, fill = Mode)) + 
  geom_bar()

unit %>% 
  ggplot(aes(Age, fill = Mode)) + 
  geom_bar(position = "fill") +
  coord_flip()

7.2 Grade Difference by each

unit %>% 
  ggplot(aes(Age, fill = Unit.of.Study.Grade)) + 
  geom_bar(position = "fill")

8 Conclusion