Introducción

Del muestreo a la estimación, muestreos complejos

Survey Package

Basado en http://javier-marquez.org/2015/10/12/como-analizar-la-envipe-en-r/

Datos actualizados de la:

Encuesta Nacional de Victimización y Percepción sobre Seguridad Pública (ENVIPE) 2017 http://www.beta.inegi.org.mx/proyectos/enchogares/regulares/envipe/2017/

Conglomerado por estados

x <- c("dplyr", "tidyr","survey","arm")
 # instalación de paquetes, con lapply se aplica una función sobre una lista de vectores. 
lapply(x, library, character.only = TRUE) # carga los paquetes requeridos
#Basado en http://javier-marquez.org/2015/10/12/como-analizar-la-envipe-en-r/
# y en http://www.beta.inegi.org.mx/contenidos/proyectos/enchogares/regulares/envipe/2016/doc/calculo_indicadores_r_envipe2016.pdf
#http://www.andrew.cmu.edu/user/jsmurray/teaching/303/files/lab.html
#https://www.jstatsoft.org/index.php/jss/article/view/v009i08/paper-5.pdf
## 
##   Seguro inseguro  no sabe 
##     28.1     69.8      2.1
##                     mean     SE
## AP4_3_3Seguro   0.239770 0.0020
## AP4_3_3inseguro 0.742934 0.0021
## AP4_3_3no sabe  0.017296 0.0006
##                    total     SE
## AP4_3_3Seguro   20113943 180989
## AP4_3_3inseguro 62323530 299494
## AP4_3_3no sabe   1450930  46419
##    by AP4_3_3Seguro AP4_3_3inseguro AP4_3_3no sabe se.AP4_3_3Seguro
## 1   1        468662          377632          18030        15080.562
## 2   2        971878         1416731          52091        32321.458
## 3   3        206536          341751          12838         7995.478
## 4   4        238715          366973          31768         9362.047
## 5   5        818960         1150527          69726        26479.719
## 6   6        129341          386839           3383         5763.000
## 7   7       1234092         1993983          37172        48687.025
## 8   8        579113         1888983          77767        22461.152
## 9   9        922432         5914760          66638        40478.338
## 10 10        438395          677032          63255        14548.997
## 11 11        898520         2901536          58078        44454.244
## 12 12        323356         1897952          63985        24467.530
## 13 13        849681         1079349          31275        31999.986
## 14 14       1826281         3626770          66522        67352.836
## 15 15       1029729        10832055          77792        75164.649
## 16 16        593905         2397006          96161        34283.614
## 17 17        174312         1174948          11717        11681.638
## 18 18        337520          499746          14948        13409.428
## 19 19       1024923         2576106          24331        53109.405
## 20 20        612160         1983011          80503        34564.919
## 21 21       1193570         2826477         130786        43974.092
## 22 22        603514          756676          29845        18923.639
## 23 23        328610          770230          26363        13581.388
## 24 24        414984         1368603          74299        23861.193
## 25 25        509917         1559350          22527        18855.216
## 26 26        850911         1166369          16060        30735.955
## 27 27        168195         1444878          13403        10474.832
## 28 28        327557         2101865          36617        17084.640
## 29 29        336871          511669          17547        12955.667
## 30 30        486444         5041676          79037        33124.943
## 31 31       1062525          410434          36183        21017.047
## 32 32        152334          881613          10283        11300.863
##    se.AP4_3_3inseguro se.AP4_3_3no sabe
## 1           13179.411         2657.0334
## 2           39411.170         7106.1236
## 3            8935.191         2043.6565
## 4           12452.423         3904.8659
## 5           33070.543         8866.0259
## 6            7395.435          805.8451
## 7           52870.112         6261.9146
## 8           38833.846        11419.1708
## 9           65221.693        11085.2370
## 10          17333.892         6556.9893
## 11          66210.649        11704.7287
## 12          43018.385         9048.1210
## 13          31215.701         4703.3443
## 14          89841.451        12577.9489
## 15         182728.900        19662.4272
## 16          51714.654        10358.1075
## 17          24089.199         2543.3672
## 18          14515.282         2824.2885
## 19          67331.529         6604.1017
## 20          54983.222        10379.7201
## 21          58429.616        13061.5870
## 22          22068.737         4610.1127
## 23          18018.464         4408.2191
## 24          50887.292        10259.1887
## 25          24438.482         4287.7377
## 26          38671.136         4962.3177
## 27          27989.715         2635.2377
## 28          34709.848         6590.3835
## 29          13421.876         3069.1911
## 30          79833.324        12192.4978
## 31          14538.624         5465.4888
## 32          19383.228         2502.3419
##    by AP4_3_3Seguro AP4_3_3inseguro AP4_3_3no sabe se.AP4_3_3Seguro
## 1   1    0.54222953       0.4369102    0.020860233      0.014114091
## 2   2    0.39819642       0.5804609    0.021342648      0.011850035
## 3   3    0.36807485       0.6090461    0.022879038      0.012995585
## 4   4    0.37448075       0.5756837    0.049835596      0.014330079
## 5   5    0.40160591       0.5642015    0.034192603      0.011808263
## 6   6    0.24894190       0.7445469    0.006511241      0.010180645
## 7   7    0.37794752       0.6106684    0.011384131      0.013592689
## 8   8    0.22747218       0.7419814    0.030546420      0.008522904
## 9   9    0.13361163       0.8567360    0.009652323      0.005731257
## 10 10    0.37193662       0.5743975    0.053665874      0.011098738
## 11 11    0.23288979       0.7520568    0.015053391      0.010273057
## 12 12    0.14149433       0.8305071    0.027998598      0.010538895
## 13 13    0.43344327       0.5506026    0.015954150      0.013267767
## 14 14    0.33087360       0.6570744    0.012052019      0.011400743
## 15 15    0.08624502       0.9072395    0.006515474      0.006203686
## 16 16    0.19238456       0.7764659    0.031149581      0.010942726
## 17 17    0.12807858       0.8633122    0.008609256      0.008349484
## 18 18    0.39605076       0.5864090    0.017540195      0.014647524
## 19 19    0.28270930       0.7105794    0.006711333      0.011168971
## 20 20    0.22878721       0.7411258    0.030086999      0.011915376
## 21 21    0.28754951       0.6809421    0.031508374      0.009426548
## 22 22    0.43417180       0.5443575    0.021470682      0.011542513
## 23 23    0.29204508       0.6845254    0.023429550      0.011092790
## 24 24    0.22336354       0.7366453    0.039991151      0.011506573
## 25 25    0.24377018       0.7454606    0.010769225      0.008027263
## 26 26    0.41847945       0.5736222    0.007898335      0.013364007
## 27 27    0.10341069       0.8883488    0.008240515      0.006402311
## 28 28    0.13282718       0.8523243    0.014848508      0.006887952
## 29 29    0.38895746       0.5907825    0.020260089      0.012958281
## 30 30    0.08675413       0.8991501    0.014095735      0.005828602
## 31 31    0.70405900       0.2719651    0.023975875      0.009458497
## 32 32    0.14588165       0.8442709    0.009847447      0.010365204
##    se.AP4_3_3inseguro se.AP4_3_3no sabe
## 1         0.013989555       0.003055923
## 2         0.012071798       0.002921146
## 3         0.012882378       0.003573434
## 4         0.014885387       0.005979947
## 5         0.012349930       0.004363129
## 6         0.010384279       0.001553401
## 7         0.013813538       0.001889949
## 8         0.010166585       0.004423578
## 9         0.005908184       0.001601312
## 10        0.010826987       0.005451350
## 11        0.010386970       0.003026758
## 12        0.011088455       0.003968235
## 13        0.013319385       0.002378002
## 14        0.011523052       0.002267248
## 15        0.006317041       0.001650414
## 16        0.011143819       0.003419725
## 17        0.008511507       0.001869457
## 18        0.014934422       0.003314884
## 19        0.011078150       0.001830415
## 20        0.012787916       0.003970793
## 21        0.009757506       0.003188953
## 22        0.011801734       0.003365824
## 23        0.011246529       0.003850868
## 24        0.013252359       0.005848656
## 25        0.007974060       0.002037740
## 26        0.013638738       0.002428209
## 27        0.006683769       0.001621786
## 28        0.007576883       0.002650911
## 29        0.012963024       0.003582494
## 30        0.006137331       0.002186709
## 31        0.009327233       0.003596514
## 32        0.010278405       0.002410842
##           [,1]    [,2] [,3]     [,4] [,5]
##  [1,]   864324  468662 54.2   377632 43.7
##  [2,]  2440700  971878 39.8  1416731 58.0
##  [3,]   561125  206536 36.8   341751 60.9
##  [4,]   637456  238715 37.4   366973 57.6
##  [5,]  2039213  818960 40.2  1150527 56.4
##  [6,]   519563  129341 24.9   386839 74.5
##  [7,]  3265247 1234092 37.8  1993983 61.1
##  [8,]  2545863  579113 22.7  1888983 74.2
##  [9,]  6903830  922432 13.4  5914760 85.7
## [10,]  1178682  438395 37.2   677032 57.4
## [11,]  3858134  898520 23.3  2901536 75.2
## [12,]  2285293  323356 14.1  1897952 83.1
## [13,]  1960305  849681 43.3  1079349 55.1
## [14,]  5519573 1826281 33.1  3626770 65.7
## [15,] 11939576 1029729  8.6 10832055 90.7
## [16,]  3087072  593905 19.2  2397006 77.6
## [17,]  1360977  174312 12.8  1174948 86.3
## [18,]   852214  337520 39.6   499746 58.6
## [19,]  3625360 1024923 28.3  2576106 71.1
## [20,]  2675674  612160 22.9  1983011 74.1
## [21,]  4150833 1193570 28.8  2826477 68.1
## [22,]  1390035  603514 43.4   756676 54.4
## [23,]  1125203  328610 29.2   770230 68.5
## [24,]  1857886  414984 22.3  1368603 73.7
## [25,]  2091794  509917 24.4  1559350 74.5
## [26,]  2033340  850911 41.8  1166369 57.4
## [27,]  1626476  168195 10.3  1444878 88.8
## [28,]  2466039  327557 13.3  2101865 85.2
## [29,]   866087  336871 38.9   511669 59.1
## [30,]  5607157  486444  8.7  5041676 89.9
## [31,]  1509142 1062525 70.4   410434 27.2
## [32,]  1044230  152334 14.6   881613 84.4

Uso de los mismos códigos en Coahuila Entidad 5 y sus municipios De los tabulados básicos a la situación de la entidad y de los municipios http://www.beta.inegi.org.mx/contenidos/proyectos/enchogares/regulares/envipe/2017/doc/envipe2017_coah.pdf>

tpv1 = read.csv(file,stringsAsFactors=FALSE,header = TRUE, fileEncoding = "UTF-8")
  tpv1<-tpv1[ tpv1$CVE_ENT %in% c(5),]   #Elección de Coahuila
  tpv1$ENT <- (tpv1$NOM_MUN)  #Agregar por municipio

#Percepción sobre seguridad en su estado AP4_3_3
#   1      "   ,   "   s   e   g   u   r   o   ?   "   
#   2     "   ,   "   i   n   s   e   g   u   r   o   ?   "   
#   9 ,   "   N   o       s   a   b   e       /       n   o       r   e   s   p   o   n   d   e   "   

tpv1$AP4_3_3  = factor(tpv1$AP4_3_3, levels = c(1,2,9), labels = c("Seguro", "inseguro","no sabe") )
round(prop.table(table(tpv1$AP4_3_3))*100,1)
## 
##   Seguro inseguro  no sabe 
##     38.9     57.7      3.4
design = svydesign(id=~UPM_DIS,strata=~EST_DIS, weights=~tpv1$FAC_ELE, data=tpv1)
svymean(~AP4_3_3, design)
##                     mean     SE
## AP4_3_3Seguro   0.401606 0.0118
## AP4_3_3inseguro 0.564201 0.0123
## AP4_3_3no sabe  0.034193 0.0044
svytotal(~AP4_3_3, design)
##                   total    SE
## AP4_3_3Seguro    818960 26480
## AP4_3_3inseguro 1150527 33071
## AP4_3_3no sabe    69726  8866
total.edo = svyby(~AP4_3_3, by=tpv1$ENT, design=design, svytotal)
total.edo
##                                          by AP4_3_3Seguro AP4_3_3inseguro
## Acuña\n                           Acuña\n         53447           39892
## Allende\n                         Allende\n          5220            6960
## Arteaga\n                         Arteaga\n         18997           12174
## Cuatro Ciénegas\n       Cuatro Ciénegas\n          1098            9882
## Francisco I. Madero\n Francisco I. Madero\n         10440           21652
## Frontera\n                       Frontera\n          9579           31248
## Múzquiz\n                       Múzquiz\n          5402           11441
## Matamoros\n                     Matamoros\n         41547           62545
## Monclova\n                       Monclova\n         34745          109456
## Nava\n                               Nava\n          4306             957
## Ocampo\n                           Ocampo\n          7462           10944
## Parras\n                           Parras\n          8057           17457
## Piedras Negras\n           Piedras Negras\n         62021           32898
## Ramos Arizpe\n               Ramos Arizpe\n         46485           44969
## Sabinas\n                         Sabinas\n          8486           12320
## Saltillo\n                       Saltillo\n        276319          242698
## San Buenaventura\n       San Buenaventura\n          6600           16256
## San Juan de Sabinas\n San Juan de Sabinas\n          6933           20435
## San Pedro\n                     San Pedro\n         46727           86524
## Torreón\n                       Torreón\n        153681          339935
## Villa Unión\n               Villa Unión\n          5985           10588
## Zaragoza\n                       Zaragoza\n          5423            9296
##                       AP4_3_3no sabe se.AP4_3_3Seguro se.AP4_3_3inseguro
## Acuña\n                        7591         6608.969           6831.601
## Allende\n                          0         5220.000           6960.000
## Arteaga\n                       3829        13724.403           8968.831
## Cuatro Ciénegas\n              1098         1098.000           9882.000
## Francisco I. Madero\n            290         8078.465          17241.201
## Frontera\n                      3139         2662.307           4129.545
## Múzquiz\n                         0         5402.000          11441.000
## Matamoros\n                     6102        12288.325          18448.263
## Monclova\n                     13277         6252.614           8610.931
## Nava\n                             0         4306.000            957.000
## Ocampo\n                           0         7462.000          10944.000
## Parras\n                           0         8057.000          17457.000
## Piedras Negras\n               17382         7131.445           6150.486
## Ramos Arizpe\n                  1771         9678.315          11350.918
## Sabinas\n                          0         2269.377           1851.641
## Saltillo\n                      2885        15789.362          16681.976
## San Buenaventura\n               606         4955.813          11574.958
## San Juan de Sabinas\n              0         4495.684          13193.090
## San Pedro\n                     1490        16571.412          26313.042
## Torreón\n                      7262         9528.365          25716.605
## Villa Unión\n                  1842         5985.000          10588.000
## Zaragoza\n                      1162         5423.000           9296.000
##                       se.AP4_3_3no sabe
## Acuña\n                       3053.489
## Allende\n                         0.000
## Arteaga\n                      3829.000
## Cuatro Ciénegas\n             1098.000
## Francisco I. Madero\n           290.000
## Frontera\n                     2236.308
## Múzquiz\n                        0.000
## Matamoros\n                    3008.317
## Monclova\n                     3927.982
## Nava\n                            0.000
## Ocampo\n                          0.000
## Parras\n                          0.000
## Piedras Negras\n               4513.351
## Ramos Arizpe\n                 1504.407
## Sabinas\n                         0.000
## Saltillo\n                     1241.151
## San Buenaventura\n              606.000
## San Juan de Sabinas\n             0.000
## San Pedro\n                    1056.152
## Torreón\n                     2296.974
## Villa Unión\n                 1842.000
## Zaragoza\n                     1162.000
prop.edo = svyby(~AP4_3_3, by=tpv1$ENT, design=design, svymean)
prop.edo
##                                          by AP4_3_3Seguro AP4_3_3inseguro
## Acuña\n                           Acuña\n    0.52954523       0.3952442
## Allende\n                         Allende\n    0.42857143       0.5714286
## Arteaga\n                         Arteaga\n    0.54277143       0.3478286
## Cuatro Ciénegas\n       Cuatro Ciénegas\n    0.09090909       0.8181818
## Francisco I. Madero\n Francisco I. Madero\n    0.32240133       0.6686431
## Frontera\n                       Frontera\n    0.21787290       0.7107310
## Múzquiz\n                       Múzquiz\n    0.32072671       0.6792733
## Matamoros\n                     Matamoros\n    0.37703505       0.5675899
## Monclova\n                       Monclova\n    0.22063399       0.6950558
## Nava\n                               Nava\n    0.81816454       0.1818355
## Ocampo\n                           Ocampo\n    0.40541128       0.5945887
## Parras\n                           Parras\n    0.31578741       0.6842126
## Piedras Negras\n           Piedras Negras\n    0.55227469       0.2929449
## Ramos Arizpe\n               Ramos Arizpe\n    0.49863234       0.4823706
## Sabinas\n                         Sabinas\n    0.40786312       0.5921369
## Saltillo\n                       Saltillo\n    0.52944614       0.4650260
## San Buenaventura\n       San Buenaventura\n    0.28130594       0.6928651
## San Juan de Sabinas\n San Juan de Sabinas\n    0.25332505       0.7466749
## San Pedro\n                     San Pedro\n    0.34679125       0.6421505
## Torreón\n                       Torreón\n    0.30682322       0.6786782
## Villa Unión\n               Villa Unión\n    0.32500679       0.5749661
## Zaragoza\n                       Zaragoza\n    0.34147724       0.5853536
##                       AP4_3_3no sabe se.AP4_3_3Seguro se.AP4_3_3inseguro
## Acuña\n                 0.075210542     6.713850e-02       6.012724e-02
## Allende\n                0.000000000     2.775558e-17       5.204170e-17
## Arteaga\n                0.109400000     3.380591e-02       1.017744e-01
## Cuatro Ciénegas\n       0.090909091     6.938894e-18       4.857226e-17
## Francisco I. Madero\n    0.008955593     1.455468e-01       1.531079e-01
## Frontera\n               0.071396079     5.752050e-02       7.140866e-02
## Múzquiz\n               0.000000000     1.301043e-17       1.301043e-17
## Matamoros\n              0.055375066     5.325852e-02       3.924123e-02
## Monclova\n               0.084310189     3.440254e-02       3.460014e-02
## Nava\n                   0.000000000     5.551115e-17       0.000000e+00
## Ocampo\n                 0.000000000     5.551115e-17       2.081668e-17
## Parras\n                 0.000000000     1.387779e-17       1.387779e-17
## Piedras Negras\n         0.154780456     5.262565e-02       4.962623e-02
## Ramos Arizpe\n           0.018997050     6.065270e-02       5.987517e-02
## Sabinas\n                0.000000000     7.859068e-02       7.859068e-02
## Saltillo\n               0.005527858     2.387642e-02       2.412252e-02
## San Buenaventura\n       0.025829000     7.252455e-02       5.439458e-02
## San Juan de Sabinas\n    0.000000000     5.159965e-02       5.159965e-02
## San Pedro\n              0.011058252     4.842344e-02       4.780816e-02
## Torreón\n               0.014498541     1.940284e-02       2.010003e-02
## Villa Unión\n           0.100027152     1.387779e-17       2.775558e-17
## Zaragoza\n               0.073169196     3.469447e-17       3.816392e-17
##                       se.AP4_3_3no sabe
## Acuña\n                   2.906132e-02
## Allende\n                  0.000000e+00
## Arteaga\n                  6.796849e-02
## Cuatro Ciénegas\n         0.000000e+00
## Francisco I. Madero\n      7.561056e-03
## Frontera\n                 5.117051e-02
## Múzquiz\n                 0.000000e+00
## Matamoros\n                2.104941e-02
## Monclova\n                 2.572870e-02
## Nava\n                     0.000000e+00
## Ocampo\n                   0.000000e+00
## Parras\n                   0.000000e+00
## Piedras Negras\n           3.986650e-02
## Ramos Arizpe\n             1.331587e-02
## Sabinas\n                  0.000000e+00
## Saltillo\n                 2.396463e-03
## San Buenaventura\n         1.812997e-02
## San Juan de Sabinas\n      0.000000e+00
## San Pedro\n                6.413296e-03
## Torreón\n                 4.647246e-03
## Villa Unión\n             1.734723e-18
## Zaragoza\n                 1.214306e-17
pob.edo = aggregate(tpv1$FAC_ELE, by=list(tpv1$ENT), sum)
cbind(Poblacion.18.y.mas <- pob.edo[,2], Seguro.Absolutos <- total.edo[,2],Seguro.Relativos <- round(prop.edo[,2]*100, 1), Inseguro.Absolutos <- total.edo[,3],Inseguro.Relativos <- round(prop.edo[,3]*100, 1))
##         [,1]   [,2] [,3]   [,4] [,5]
##  [1,] 100930  53447 53.0  39892 39.5
##  [2,]  12180   5220 42.9   6960 57.1
##  [3,]  35000  18997 54.3  12174 34.8
##  [4,]  12078   1098  9.1   9882 81.8
##  [5,]  32382  10440 32.2  21652 66.9
##  [6,]  43966   9579 21.8  31248 71.1
##  [7,]  16843   5402 32.1  11441 67.9
##  [8,] 110194  41547 37.7  62545 56.8
##  [9,] 157478  34745 22.1 109456 69.5
## [10,]   5263   4306 81.8    957 18.2
## [11,]  18406   7462 40.5  10944 59.5
## [12,]  25514   8057 31.6  17457 68.4
## [13,] 112301  62021 55.2  32898 29.3
## [14,]  93225  46485 49.9  44969 48.2
## [15,]  20806   8486 40.8  12320 59.2
## [16,] 521902 276319 52.9 242698 46.5
## [17,]  23462   6600 28.1  16256 69.3
## [18,]  27368   6933 25.3  20435 74.7
## [19,] 134741  46727 34.7  86524 64.2
## [20,] 500878 153681 30.7 339935 67.9
## [21,]  18415   5985 32.5  10588 57.5
## [22,]  15881   5423 34.1   9296 58.5
abbrev = c('Acuña','Allende','Arteaga','Cuatrociénegas','Fco I Madero','Frontera','Múzquiz','Matamoros','Monclova','Nava','Ocampo','Parras','Piedras Negras','Ramoz Arispe','Sabinas','Saltillo','SanBuenaventura','Sabinas','San Pedro','Torreón','Villa Unión','Zaragoza')
coefplot(rev(prop.edo[,3]*100), rev(prop.edo[,5]*100), varnames=rev(abbrev), cex.var= 0.4, cex.pts=1, col.pts="blue",main='% Inseguro')
abline(v=svymean(~AP4_3_3, design)[2]*100, lty='dashed')