# Load metadata information
library(readr)
library(DESeq2)
library(dplyr)

Metadata and data

## Warning in instance$preRenderHook(instance): It seems your data is too
## big for client-side DataTables. You may consider server-side processing:
## https://rstudio.github.io/DT/server.html

Gene ST13P12

## # A tibble: 7 x 5
##   groups2 nb.samples sum.counts avg.count max.count
##   <chr>        <int>      <int>     <dbl>     <dbl>
## 1 A                4          0      0            0
## 2 B                3          3      1            1
## 3 C                2          1      0.5          1
## 4 D                4          1      0.25         1
## 5 E                3        643    214.         642
## 6 F                3          3      1            3
## 7 X                1          0      0            0

DEA

## Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in
## design formula are characters, converting to factors

##           [,1]  [,2]
## IOSE11    "0"   "F" 
## IOSE4     "0"   "D" 
## FT246     "0"   "X" 
## FT33      "0"   "B" 
## EEC16     "0"   "E" 
## EFO27     "1"   "A" 
## GTFR230   "1"   "A" 
## MCAS      "1"   "B" 
## OAW42     "0"   "D" 
## VOA1056   "1"   "A" 
## CaOV3     "0"   "A" 
## HEY       "0"   "E" 
## UWB1_289  "1"   "B" 
## Kuramochi "0"   "F" 
## ES2       "1"   "F" 
## JHOC5     "642" "C" 
## RMGII     "0"   "E" 
## BT549     "3"   "D" 
## MCF10A    "0"   "C" 
## MCF7      "0"   "D"
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
## log2 fold change (MLE): groups2 A vs E 
## Wald test p-value: groups2 A vs E 
## DataFrame with 1 row and 6 columns
##                          baseMean   log2FoldChange            lfcSE
##                         <numeric>        <numeric>        <numeric>
## ENSG00000248400.2 25.002057999415 13.9216827751186 2.55812781347369
##                               stat               pvalue
##                          <numeric>            <numeric>
## ENSG00000248400.2 5.44213729345066 5.26450749598908e-08
##                                  padj
##                             <numeric>
## ENSG00000248400.2 6.0835144478651e-05
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
## log2 fold change (MLE): groups2 E vs A 
## Wald test p-value: groups2 E vs A 
## DataFrame with 1 row and 6 columns
##                          baseMean    log2FoldChange            lfcSE
##                         <numeric>         <numeric>        <numeric>
## ENSG00000248400.2 25.002057999415 -29.7213619263519 2.55819943569283
##                               stat               pvalue
##                          <numeric>            <numeric>
## ENSG00000248400.2 -11.618078524946 3.33553730190726e-31
##                                   padj
##                              <numeric>
## ENSG00000248400.2 2.69811612351278e-27

Session Information

## R version 3.5.0 (2018-04-23)
## Platform: x86_64-apple-darwin15.6.0 (64-bit)
## Running under: macOS High Sierra 10.13.4
## 
## Matrix products: default
## BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib
## 
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
## 
## attached base packages:
## [1] parallel  stats4    stats     graphics  grDevices utils     datasets 
## [8] methods   base     
## 
## other attached packages:
##  [1] bindrcpp_0.2.2              dplyr_0.7.5                
##  [3] DESeq2_1.20.0               SummarizedExperiment_1.10.1
##  [5] DelayedArray_0.6.0          BiocParallel_1.14.1        
##  [7] matrixStats_0.53.1          Biobase_2.40.0             
##  [9] GenomicRanges_1.32.3        GenomeInfoDb_1.16.0        
## [11] IRanges_2.14.10             S4Vectors_0.18.2           
## [13] BiocGenerics_0.26.0         readr_1.1.1                
## 
## loaded via a namespace (and not attached):
##  [1] bitops_1.0-6           bit64_0.9-7            RColorBrewer_1.1-2    
##  [4] rprojroot_1.3-2        tools_3.5.0            backports_1.1.2       
##  [7] utf8_1.1.3             R6_2.2.2               DT_0.4                
## [10] rpart_4.1-13           Hmisc_4.1-1            DBI_1.0.0             
## [13] lazyeval_0.2.1         colorspace_1.3-2       nnet_7.3-12           
## [16] tidyselect_0.2.4       gridExtra_2.3          bit_1.1-13            
## [19] compiler_3.5.0         cli_1.0.0              htmlTable_1.11.2      
## [22] scales_0.5.0           checkmate_1.8.5        genefilter_1.62.0     
## [25] stringr_1.3.1          digest_0.6.15          foreign_0.8-70        
## [28] rmarkdown_1.9          XVector_0.20.0         base64enc_0.1-3       
## [31] pkgconfig_2.0.1        htmltools_0.3.6        htmlwidgets_1.2       
## [34] rlang_0.2.0            rstudioapi_0.7         RSQLite_2.1.1         
## [37] shiny_1.0.5            bindr_0.1.1            jsonlite_1.5          
## [40] crosstalk_1.0.0        acepack_1.4.1          RCurl_1.95-4.10       
## [43] magrittr_1.5           GenomeInfoDbData_1.1.0 Formula_1.2-3         
## [46] Matrix_1.2-14          Rcpp_0.12.17           munsell_0.4.3         
## [49] stringi_1.2.2          yaml_2.1.19            zlibbioc_1.26.0       
## [52] plyr_1.8.4             grid_3.5.0             blob_1.1.1            
## [55] promises_1.0.1         crayon_1.3.4           lattice_0.20-35       
## [58] splines_3.5.0          annotate_1.58.0        hms_0.4.2             
## [61] locfit_1.5-9.1         knitr_1.20             pillar_1.2.2          
## [64] geneplotter_1.58.0     XML_3.98-1.11          glue_1.2.0            
## [67] evaluate_0.10.1        latticeExtra_0.6-28    data.table_1.11.2     
## [70] httpuv_1.4.3           gtable_0.2.0           purrr_0.2.4           
## [73] assertthat_0.2.0       ggplot2_2.2.1          mime_0.5              
## [76] xtable_1.8-2           later_0.7.2            survival_2.42-3       
## [79] tibble_1.4.2           AnnotationDbi_1.42.1   memoise_1.1.0         
## [82] cluster_2.0.7-1