library(magrittr)
library(nlme)
setwd("/home/michael/Dropbox/BGU/1_Other/Ilan_Stavi/")
# Read data
dat = read.csv("data/Sde Zin_all data_170703+correlations.csv", stringsAsFactors = FALSE, check.names = FALSE)
# Variables
vars = setdiff(colnames(dat), c("#", "Block", "Treatment", "Spot", "Depth"))
# Histograms
for(i in vars) {
hist(dat[[i]], main = i)
k = shapiro.test(dat[[i]])
print(k)
}

##
## Shapiro-Wilk normality test
##
## data: dat[[i]]
## W = 0.73486, p-value = 4.339e-10

##
## Shapiro-Wilk normality test
##
## data: dat[[i]]
## W = 0.9395, p-value = 0.001787

##
## Shapiro-Wilk normality test
##
## data: dat[[i]]
## W = 0.89779, p-value = 0.002971

##
## Shapiro-Wilk normality test
##
## data: dat[[i]]
## W = 0.82537, p-value = 8.83e-08

##
## Shapiro-Wilk normality test
##
## data: dat[[i]]
## W = 0.96247, p-value = 0.0305

##
## Shapiro-Wilk normality test
##
## data: dat[[i]]
## W = 0.96247, p-value = 0.0305

##
## Shapiro-Wilk normality test
##
## data: dat[[i]]
## W = 0.98297, p-value = 0.4394

##
## Shapiro-Wilk normality test
##
## data: dat[[i]]
## W = 0.93378, p-value = 0.0009348

##
## Shapiro-Wilk normality test
##
## data: dat[[i]]
## W = 0.90729, p-value = 0.005434

##
## Shapiro-Wilk normality test
##
## data: dat[[i]]
## W = 0.97201, p-value = 0.1084

##
## Shapiro-Wilk normality test
##
## data: dat[[i]]
## W = 0.79855, p-value = 3.761e-07

##
## Shapiro-Wilk normality test
##
## data: dat[[i]]
## W = 0.96596, p-value = 0.1275