1 RMSD : A2.0 Aamavaata

## Warning in .add_surv_median(p, fit, type = surv.median.line, fun = fun, :
## Median survival not reached.

1.1 Kaplan Meier table

## Call: survfit(formula = Surv(disdur, status) ~ patient_gender, data = tmp)
## 
##                 patient_gender=F 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     1   7935     333    0.958 0.00225        0.954        0.962
##     2   4133      95    0.936 0.00313        0.930        0.942
##     3   3287      30    0.927 0.00347        0.921        0.934
##     4   2873      30    0.918 0.00386        0.910        0.925
##     7   2203      45    0.901 0.00456        0.892        0.910
##    13   1594      33    0.885 0.00525        0.875        0.895
##    25    919      53    0.847 0.00722        0.833        0.861
##    37    519      18    0.824 0.00878        0.807        0.842
##    49    256      11    0.801 0.01110        0.779        0.823
##    61    110       3    0.787 0.01339        0.761        0.814
## 
##                 patient_gender=M 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     1   6356     108    0.983 0.00162        0.980        0.986
##     2   2929      19    0.977 0.00217        0.972        0.981
##     3   2352       4    0.975 0.00232        0.970        0.980
##     4   2087       5    0.973 0.00254        0.968        0.978
##     7   1656       9    0.968 0.00302        0.962        0.974
##    13   1206      13    0.959 0.00389        0.951        0.966
##    25    728      15    0.944 0.00536        0.934        0.955
##    37    430       3    0.939 0.00619        0.927        0.951
##    49    218       3    0.930 0.00818        0.914        0.946
##    61    106       0    0.930 0.00818        0.914        0.946

1.2 Survival plot

1.3 Hazard ratio plot

## Call:
## coxph(formula = Surv(disdur, status) ~ patient_gender, data = tmp)
## 
##                    coef exp(coef) se(coef)     z      p
## patient_genderM -1.0414    0.3530   0.0842 -12.4 <2e-16
## 
## Likelihood ratio test=181  on 1 df, p=0
## n= 14291, number of events= 832

2 RMSD : A2.1 Aamavaata - Kaphaja

## Warning in .add_surv_median(p, fit, type = surv.median.line, fun = fun, :
## Median survival not reached.

2.1 Kaplan Meier table

## Call: survfit(formula = Surv(disdur, status) ~ patient_gender, data = tmp)
## 
##                 patient_gender=F 
##  time n.risk n.event survival  std.err lower 95% CI upper 95% CI
##     1   7935      10    0.999 0.000398        0.998        1.000
##     2   4224       1    0.999 0.000463        0.998        0.999
##     3   3391       1    0.998 0.000549        0.997        0.999
##     4   2976       0    0.998 0.000549        0.997        0.999
##     7   2294       0    0.998 0.000549        0.997        0.999
##    13   1670       1    0.998 0.000753        0.996        0.999
##    25    972       0    0.998 0.000753        0.996        0.999
##    37    553       0    0.998 0.000753        0.996        0.999
##    49    276       0    0.998 0.000753        0.996        0.999
##    61    118       0    0.998 0.000753        0.996        0.999
## 
##                 patient_gender=M 
##  time n.risk n.event survival  std.err lower 95% CI upper 95% CI
##     1   6356       4    0.999 0.000315        0.999            1
##     2   2961       0    0.999 0.000315        0.999            1
##     3   2387       0    0.999 0.000315        0.999            1
##     4   2123       0    0.999 0.000315        0.999            1
##     7   1687       0    0.999 0.000315        0.999            1
##    13   1227       0    0.999 0.000315        0.999            1
##    25    746       0    0.999 0.000315        0.999            1
##    37    444       0    0.999 0.000315        0.999            1
##    49    230       0    0.999 0.000315        0.999            1
##    61    110       0    0.999 0.000315        0.999            1

2.2 Survival plot

2.3 Hazard ratio plot

## Call:
## coxph(formula = Surv(disdur, status) ~ patient_gender, data = tmp)
## 
##                   coef exp(coef) se(coef)     z   p
## patient_genderM -0.936     0.392    0.572 -1.64 0.1
## 
## Likelihood ratio test=3.08  on 1 df, p=0.0791
## n= 14291, number of events= 17

3 RMSD : A2.2 Aamavaata - Pittaja

## Warning in .add_surv_median(p, fit, type = surv.median.line, fun = fun, :
## Median survival not reached.

3.1 Kaplan Meier table

## Call: survfit(formula = Surv(disdur, status) ~ patient_gender, data = tmp)
## 
##                 patient_gender=F 
##  time n.risk n.event survival  std.err lower 95% CI upper 95% CI
##     1   7935       3    1.000 0.000218        0.999            1
##     2   4224       0    1.000 0.000218        0.999            1
##     3   3391       0    1.000 0.000218        0.999            1
##     4   2976       1    0.999 0.000400        0.999            1
##     7   2295       0    0.999 0.000400        0.999            1
##    13   1672       0    0.999 0.000400        0.999            1
##    25    974       0    0.999 0.000400        0.999            1
##    37    554       0    0.999 0.000400        0.999            1
##    49    277       0    0.999 0.000400        0.999            1
##    61    119       0    0.999 0.000400        0.999            1
## 
##                 patient_gender=M 
##  time n.risk n.event survival  std.err lower 95% CI upper 95% CI
##     1   6356       2    1.000 0.000222        0.999            1
##     2   2964       1    0.999 0.000404        0.999            1
##     3   2388       0    0.999 0.000404        0.999            1
##     4   2124       0    0.999 0.000404        0.999            1
##     7   1688       0    0.999 0.000404        0.999            1
##    13   1228       0    0.999 0.000404        0.999            1
##    25    747       0    0.999 0.000404        0.999            1
##    37    444       0    0.999 0.000404        0.999            1
##    49    230       0    0.999 0.000404        0.999            1
##    61    110       0    0.999 0.000404        0.999            1

3.2 Survival plot

3.3 Hazard ratio plot

## Call:
## coxph(formula = Surv(disdur, status) ~ patient_gender, data = tmp)
## 
##                    coef exp(coef) se(coef)     z    p
## patient_genderM -0.0307    0.9698   0.7641 -0.04 0.97
## 
## Likelihood ratio test=0  on 1 df, p=0.968
## n= 14291, number of events= 7

4 RMSD : A2.3 Aamavaata - Vaataja

## Warning in .add_surv_median(p, fit, type = surv.median.line, fun = fun, :
## Median survival not reached.

4.1 Kaplan Meier table

## Call: survfit(formula = Surv(disdur, status) ~ patient_gender, data = tmp)
## 
##                 patient_gender=F 
##  time n.risk n.event survival  std.err lower 95% CI upper 95% CI
##     1   7935      24    0.997 0.000616        0.996        0.998
##     2   4213       0    0.997 0.000616        0.996        0.998
##     3   3381       1    0.997 0.000683        0.995        0.998
##     4   2966       0    0.997 0.000683        0.995        0.998
##     7   2285       1    0.996 0.000793        0.995        0.998
##    13   1666       1    0.996 0.000919        0.994        0.998
##    25    971       0    0.996 0.000919        0.994        0.998
##    37    553       0    0.996 0.000919        0.994        0.998
##    49    277       0    0.996 0.000919        0.994        0.998
##    61    119       0    0.996 0.000919        0.994        0.998
## 
##                 patient_gender=M 
##  time n.risk n.event survival  std.err lower 95% CI upper 95% CI
##     1   6356       4    0.999 0.000315        0.999            1
##     2   2962       1    0.999 0.000461        0.998            1
##     3   2386       0    0.999 0.000461        0.998            1
##     4   2123       0    0.999 0.000461        0.998            1
##     7   1686       1    0.999 0.000695        0.997            1
##    13   1226       1    0.998 0.000994        0.996            1
##    25    745       0    0.998 0.000994        0.996            1
##    37    442       0    0.998 0.000994        0.996            1
##    49    229       0    0.998 0.000994        0.996            1
##    61    110       0    0.998 0.000994        0.996            1

4.2 Survival plot

4.3 Hazard ratio plot

## Call:
## coxph(formula = Surv(disdur, status) ~ patient_gender, data = tmp)
## 
##                   coef exp(coef) se(coef)     z      p
## patient_genderM -1.110     0.329    0.424 -2.62 0.0088
## 
## Likelihood ratio test=8.25  on 1 df, p=0.00407
## n= 14291, number of events= 34

5 RMSD : A3.0 Abhighataja Shoola

## Warning in .add_surv_median(p, fit, type = surv.median.line, fun = fun, :
## Median survival not reached.

5.1 Kaplan Meier table

## Call: survfit(formula = Surv(disdur, status) ~ patient_gender, data = tmp)
## 
##                 patient_gender=F 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     1   7935     262    0.967 0.00201        0.963        0.971
##     2   4114      28    0.960 0.00235        0.956        0.965
##     3   3276       9    0.958 0.00250        0.953        0.963
##     4   2861       6    0.956 0.00263        0.951        0.961
##     7   2195       9    0.952 0.00288        0.946        0.958
##    13   1582       9    0.948 0.00325        0.941        0.954
##    25    906       8    0.941 0.00397        0.933        0.949
##    37    505       0    0.941 0.00397        0.933        0.949
##    49    247       0    0.941 0.00397        0.933        0.949
##    61    111       0    0.941 0.00397        0.933        0.949
## 
##                 patient_gender=M 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     1   6356     338    0.947 0.00281        0.941        0.952
##     2   2845      43    0.933 0.00352        0.926        0.939
##     3   2261       8    0.929 0.00369        0.922        0.936
##     4   1999       1    0.929 0.00372        0.921        0.936
##     7   1568      10    0.923 0.00407        0.915        0.931
##    13   1129       4    0.920 0.00432        0.912        0.929
##    25    687       4    0.916 0.00476        0.907        0.926
##    37    403       0    0.916 0.00476        0.907        0.926
##    49    205       0    0.916 0.00476        0.907        0.926
##    61     98       0    0.916 0.00476        0.907        0.926

5.2 Survival plot

5.3 Hazard ratio plot

## Call:
## coxph(formula = Surv(disdur, status) ~ patient_gender, data = tmp)
## 
##                  coef exp(coef) se(coef)    z       p
## patient_genderM 0.465     1.593    0.074 6.29 3.2e-10
## 
## Likelihood ratio test=39.9  on 1 df, p=2.74e-10
## n= 14291, number of events= 739

6 RMSD : S10.0 Stambha

## Warning in .add_surv_median(p, fit, type = surv.median.line, fun = fun, :
## Median survival not reached.
## Warning in fitter(X, Y, strats, offset, init, control, weights = weights, :
## Loglik converged before variable 1 ; beta may be infinite.

6.1 Kaplan Meier table

## Call: survfit(formula = Surv(disdur, status) ~ patient_gender, data = tmp)
## 
##                 patient_gender=F 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     1   7935       0        1       0            1            1
##     2   4227       0        1       0            1            1
##     3   3394       0        1       0            1            1
##     4   2978       0        1       0            1            1
##     7   2296       0        1       0            1            1
##    13   1673       0        1       0            1            1
##    25    974       0        1       0            1            1
##    37    554       0        1       0            1            1
##    49    277       0        1       0            1            1
##    61    119       0        1       0            1            1
## 
##                 patient_gender=M 
##  time n.risk n.event survival  std.err lower 95% CI upper 95% CI
##     1   6356       2        1 0.000222        0.999            1
##     2   2964       0        1 0.000222        0.999            1
##     3   2388       0        1 0.000222        0.999            1
##     4   2124       0        1 0.000222        0.999            1
##     7   1688       0        1 0.000222        0.999            1
##    13   1228       0        1 0.000222        0.999            1
##    25    747       0        1 0.000222        0.999            1
##    37    444       0        1 0.000222        0.999            1
##    49    230       0        1 0.000222        0.999            1
##    61    110       0        1 0.000222        0.999            1

6.2 Survival plot

6.3 Hazard ratio plot

## Call:
## coxph(formula = Surv(disdur, status) ~ patient_gender, data = tmp)
## 
##                     coef exp(coef) se(coef) z p
## patient_genderM 1.94e+01  2.79e+08 1.06e+04 0 1
## 
## Likelihood ratio test=3.24  on 1 df, p=0.0718
## n= 14291, number of events= 2
## Warning: Transformation introduced infinite values in continuous y-axis

## Warning: Transformation introduced infinite values in continuous y-axis

## Warning: Transformation introduced infinite values in continuous y-axis
## Warning: Removed 1 rows containing missing values (geom_text).

## Warning: Removed 1 rows containing missing values (geom_text).

## Warning: Removed 1 rows containing missing values (geom_text).

## Warning: Removed 1 rows containing missing values (geom_text).

## Warning: Removed 1 rows containing missing values (geom_text).

## Warning: Removed 1 rows containing missing values (geom_text).

7 RMSD : S10.1 Stambha - Baahu Stambha

## Warning in .add_surv_median(p, fit, type = surv.median.line, fun = fun, :
## Median survival not reached.

7.1 Kaplan Meier table

## Call: survfit(formula = Surv(disdur, status) ~ patient_gender, data = tmp)
## 
##                 patient_gender=F 
##  time n.risk n.event survival  std.err lower 95% CI upper 95% CI
##     1   7935       4    0.999 0.000252        0.999            1
##     2   4226       0    0.999 0.000252        0.999            1
##     3   3394       0    0.999 0.000252        0.999            1
##     4   2978       0    0.999 0.000252        0.999            1
##     7   2296       0    0.999 0.000252        0.999            1
##    13   1673       0    0.999 0.000252        0.999            1
##    25    974       0    0.999 0.000252        0.999            1
##    37    554       0    0.999 0.000252        0.999            1
##    49    277       0    0.999 0.000252        0.999            1
##    61    119       0    0.999 0.000252        0.999            1
## 
##                 patient_gender=M 
##  time n.risk n.event survival  std.err lower 95% CI upper 95% CI
##     1   6356       3        1 0.000272        0.999            1
##     2   2962       0        1 0.000272        0.999            1
##     3   2386       0        1 0.000272        0.999            1
##     4   2122       0        1 0.000272        0.999            1
##     7   1687       0        1 0.000272        0.999            1
##    13   1228       0        1 0.000272        0.999            1
##    25    747       0        1 0.000272        0.999            1
##    37    444       0        1 0.000272        0.999            1
##    49    230       0        1 0.000272        0.999            1
##    61    110       0        1 0.000272        0.999            1

7.2 Survival plot

7.3 Hazard ratio plot

## Call:
## coxph(formula = Surv(disdur, status) ~ patient_gender, data = tmp)
## 
##                    coef exp(coef) se(coef)     z    p
## patient_genderM -0.0658    0.9363   0.7638 -0.09 0.93
## 
## Likelihood ratio test=0.01  on 1 df, p=0.931
## n= 14291, number of events= 7

8 RMSD : S10.10 Stambha - Prishtha Stambha

## Warning in .add_surv_median(p, fit, type = surv.median.line, fun = fun, :
## Median survival not reached.

8.1 Kaplan Meier table

## Call: survfit(formula = Surv(disdur, status) ~ patient_gender, data = tmp)
## 
##                 patient_gender=F 
##  time n.risk n.event survival  std.err lower 95% CI upper 95% CI
##     1   7935       1        1 0.000126            1            1
##     2   4227       0        1 0.000126            1            1
##     3   3394       0        1 0.000126            1            1
##     4   2978       0        1 0.000126            1            1
##     7   2296       0        1 0.000126            1            1
##    13   1673       0        1 0.000126            1            1
##    25    974       0        1 0.000126            1            1
##    37    554       0        1 0.000126            1            1
##    49    277       0        1 0.000126            1            1
##    61    119       0        1 0.000126            1            1
## 
##                 patient_gender=M 
##  time n.risk n.event survival  std.err lower 95% CI upper 95% CI
##     1   6356       1        1 0.000157            1            1
##     2   2964       0        1 0.000157            1            1
##     3   2388       0        1 0.000157            1            1
##     4   2124       0        1 0.000157            1            1
##     7   1688       0        1 0.000157            1            1
##    13   1228       0        1 0.000157            1            1
##    25    747       0        1 0.000157            1            1
##    37    444       0        1 0.000157            1            1
##    49    230       0        1 0.000157            1            1
##    61    110       0        1 0.000157            1            1

8.2 Survival plot

8.3 Hazard ratio plot

## Call:
## coxph(formula = Surv(disdur, status) ~ patient_gender, data = tmp)
## 
##                  coef exp(coef) se(coef)    z    p
## patient_genderM 0.222     1.248    1.414 0.16 0.88
## 
## Likelihood ratio test=0.02  on 1 df, p=0.875
## n= 14291, number of events= 2

9 RMSD : S10.12 Stambha - Sandhi Stambha

## Warning in .add_surv_median(p, fit, type = surv.median.line, fun = fun, :
## Median survival not reached.

9.1 Kaplan Meier table

## Call: survfit(formula = Surv(disdur, status) ~ patient_gender, data = tmp)
## 
##                 patient_gender=F 
##  time n.risk n.event survival  std.err lower 95% CI upper 95% CI
##     1   7935       1        1 0.000126            1            1
##     2   4226       0        1 0.000126            1            1
##     3   3393       0        1 0.000126            1            1
##     4   2977       0        1 0.000126            1            1
##     7   2295       0        1 0.000126            1            1
##    13   1672       0        1 0.000126            1            1
##    25    973       0        1 0.000126            1            1
##    37    554       0        1 0.000126            1            1
##    49    277       0        1 0.000126            1            1
##    61    119       0        1 0.000126            1            1
## 
##                 patient_gender=M 
##  time n.risk n.event survival  std.err lower 95% CI upper 95% CI
##     1   6356       2        1 0.000222        0.999            1
##     2   2962       0        1 0.000222        0.999            1
##     3   2386       0        1 0.000222        0.999            1
##     4   2122       0        1 0.000222        0.999            1
##     7   1687       0        1 0.000222        0.999            1
##    13   1227       0        1 0.000222        0.999            1
##    25    747       0        1 0.000222        0.999            1
##    37    444       0        1 0.000222        0.999            1
##    49    230       0        1 0.000222        0.999            1
##    61    110       0        1 0.000222        0.999            1

9.2 Survival plot

9.3 Hazard ratio plot

## Call:
## coxph(formula = Surv(disdur, status) ~ patient_gender, data = tmp)
## 
##                  coef exp(coef) se(coef)    z    p
## patient_genderM 0.915     2.497    1.225 0.75 0.45
## 
## Likelihood ratio test=0.6  on 1 df, p=0.439
## n= 14291, number of events= 3

10 RMSD : S10.13 Stambha - Siraa Stambha

## Warning in .add_surv_median(p, fit, type = surv.median.line, fun = fun, :
## Median survival not reached.
## Warning in fitter(X, Y, strats, offset, init, control, weights = weights, :
## Loglik converged before variable 1 ; beta may be infinite.

10.1 Kaplan Meier table

## Call: survfit(formula = Surv(disdur, status) ~ patient_gender, data = tmp)
## 
##                 patient_gender=F 
##  time n.risk n.event survival  std.err lower 95% CI upper 95% CI
##     1   7935       1        1 0.000126            1            1
##     2   4226       0        1 0.000126            1            1
##     3   3394       0        1 0.000126            1            1
##     4   2978       0        1 0.000126            1            1
##     7   2296       0        1 0.000126            1            1
##    13   1673       0        1 0.000126            1            1
##    25    974       0        1 0.000126            1            1
##    37    554       0        1 0.000126            1            1
##    49    277       0        1 0.000126            1            1
##    61    119       0        1 0.000126            1            1
## 
##                 patient_gender=M 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     1   6356       0        1       0            1            1
##     2   2964       0        1       0            1            1
##     3   2388       0        1       0            1            1
##     4   2124       0        1       0            1            1
##     7   1688       0        1       0            1            1
##    13   1228       0        1       0            1            1
##    25    747       0        1       0            1            1
##    37    444       0        1       0            1            1
##    49    230       0        1       0            1            1
##    61    110       0        1       0            1            1

10.2 Survival plot

10.3 Hazard ratio plot

## Call:
## coxph(formula = Surv(disdur, status) ~ patient_gender, data = tmp)
## 
##                      coef exp(coef)  se(coef) z p
## patient_genderM -1.90e+01  5.61e-09  1.49e+04 0 1
## 
## Likelihood ratio test=1.18  on 1 df, p=0.278
## n= 14291, number of events= 1
## Warning: Transformation introduced infinite values in continuous y-axis

## Warning: Transformation introduced infinite values in continuous y-axis

## Warning: Transformation introduced infinite values in continuous y-axis
## Warning: Removed 1 rows containing missing values (geom_text).

## Warning: Removed 1 rows containing missing values (geom_text).

## Warning: Removed 1 rows containing missing values (geom_text).

## Warning: Removed 1 rows containing missing values (geom_text).

## Warning: Removed 1 rows containing missing values (geom_text).

## Warning: Removed 1 rows containing missing values (geom_text).

11 RMSD : S10.14 Stambha - Uru Stambha

## Warning in .add_surv_median(p, fit, type = surv.median.line, fun = fun, :
## Median survival not reached.
## Warning in fitter(X, Y, strats, offset, init, control, weights = weights, :
## Loglik converged before variable 1 ; beta may be infinite.

11.1 Kaplan Meier table

## Call: survfit(formula = Surv(disdur, status) ~ patient_gender, data = tmp)
## 
##                 patient_gender=F 
##  time n.risk n.event survival  std.err lower 95% CI upper 95% CI
##     1   7935       2        1 0.000178        0.999            1
##     2   4225       1        1 0.000296        0.999            1
##     3   3392       0        1 0.000296        0.999            1
##     4   2976       0        1 0.000296        0.999            1
##     7   2294       0        1 0.000296        0.999            1
##    13   1672       0        1 0.000296        0.999            1
##    25    973       0        1 0.000296        0.999            1
##    37    553       0        1 0.000296        0.999            1
##    49    276       0        1 0.000296        0.999            1
##    61    118       0        1 0.000296        0.999            1
## 
##                 patient_gender=M 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     1   6356       0        1       0            1            1
##     2   2964       0        1       0            1            1
##     3   2388       0        1       0            1            1
##     4   2124       0        1       0            1            1
##     7   1688       0        1       0            1            1
##    13   1228       0        1       0            1            1
##    25    747       0        1       0            1            1
##    37    444       0        1       0            1            1
##    49    230       0        1       0            1            1
##    61    110       0        1       0            1            1

11.2 Survival plot

11.3 Hazard ratio plot

## Call:
## coxph(formula = Surv(disdur, status) ~ patient_gender, data = tmp)
## 
##                      coef exp(coef)  se(coef) z p
## patient_genderM -1.90e+01  5.80e-09  8.65e+03 0 1
## 
## Likelihood ratio test=3.42  on 1 df, p=0.0645
## n= 14291, number of events= 3
## Warning: Transformation introduced infinite values in continuous y-axis

## Warning: Transformation introduced infinite values in continuous y-axis

## Warning: Transformation introduced infinite values in continuous y-axis
## Warning: Removed 1 rows containing missing values (geom_text).

## Warning: Removed 1 rows containing missing values (geom_text).

## Warning: Removed 1 rows containing missing values (geom_text).

## Warning: Removed 1 rows containing missing values (geom_text).

## Warning: Removed 1 rows containing missing values (geom_text).

## Warning: Removed 1 rows containing missing values (geom_text).

12 RMSD : S10.4 Stambha - Greevaa Stambha

## Warning in .add_surv_median(p, fit, type = surv.median.line, fun = fun, :
## Median survival not reached.

12.1 Kaplan Meier table

## Call: survfit(formula = Surv(disdur, status) ~ patient_gender, data = tmp)
## 
##                 patient_gender=F 
##  time n.risk n.event survival  std.err lower 95% CI upper 95% CI
##     1   7935      17    0.998 0.000519        0.997        0.999
##     2   4219       0    0.998 0.000519        0.997        0.999
##     3   3386       0    0.998 0.000519        0.997        0.999
##     4   2972       0    0.998 0.000519        0.997        0.999
##     7   2290       1    0.997 0.000639        0.996        0.999
##    13   1669       0    0.997 0.000639        0.996        0.999
##    25    973       0    0.997 0.000639        0.996        0.999
##    37    553       0    0.997 0.000639        0.996        0.999
##    49    276       0    0.997 0.000639        0.996        0.999
##    61    118       0    0.997 0.000639        0.996        0.999
## 
##                 patient_gender=M 
##  time n.risk n.event survival  std.err lower 95% CI upper 95% CI
##     1   6356      15    0.998 0.000609        0.996        0.999
##     2   2957       3    0.997 0.000843        0.995        0.998
##     3   2380       0    0.997 0.000843        0.995        0.998
##     4   2117       0    0.997 0.000843        0.995        0.998
##     7   1682       1    0.996 0.001009        0.994        0.998
##    13   1222       1    0.995 0.001213        0.993        0.998
##    25    741       0    0.995 0.001213        0.993        0.998
##    37    439       0    0.995 0.001213        0.993        0.998
##    49    228       0    0.995 0.001213        0.993        0.998
##    61    108       0    0.995 0.001213        0.993        0.998

12.2 Survival plot

12.3 Hazard ratio plot

## Call:
## coxph(formula = Surv(disdur, status) ~ patient_gender, data = tmp)
## 
##                  coef exp(coef) se(coef)    z    p
## patient_genderM 0.346     1.413    0.325 1.06 0.29
## 
## Likelihood ratio test=1.13  on 1 df, p=0.287
## n= 14291, number of events= 38

13 RMSD : S10.5 Stambha - Hanu Stambha

## Warning in .add_surv_median(p, fit, type = surv.median.line, fun = fun, :
## Median survival not reached.

13.1 Kaplan Meier table

## Call: survfit(formula = Surv(disdur, status) ~ patient_gender, data = tmp)
## 
##                 patient_gender=F 
##  time n.risk n.event survival  std.err lower 95% CI upper 95% CI
##     1   7935       1        1 0.000126            1            1
##     2   4226       0        1 0.000126            1            1
##     3   3394       0        1 0.000126            1            1
##     4   2978       0        1 0.000126            1            1
##     7   2296       0        1 0.000126            1            1
##    13   1673       0        1 0.000126            1            1
##    25    974       0        1 0.000126            1            1
##    37    554       0        1 0.000126            1            1
##    49    277       0        1 0.000126            1            1
##    61    119       0        1 0.000126            1            1
## 
##                 patient_gender=M 
##  time n.risk n.event survival  std.err lower 95% CI upper 95% CI
##     1   6356       1    1.000 0.000157        1.000            1
##     2   2963       1    1.000 0.000372        0.999            1
##     3   2387       1    0.999 0.000560        0.998            1
##     4   2123       0    0.999 0.000560        0.998            1
##     7   1687       0    0.999 0.000560        0.998            1
##    13   1228       0    0.999 0.000560        0.998            1
##    25    747       0    0.999 0.000560        0.998            1
##    37    444       0    0.999 0.000560        0.998            1
##    49    230       0    0.999 0.000560        0.998            1
##    61    110       0    0.999 0.000560        0.998            1

13.2 Survival plot

13.3 Hazard ratio plot

## Call:
## coxph(formula = Surv(disdur, status) ~ patient_gender, data = tmp)
## 
##                 coef exp(coef) se(coef)   z    p
## patient_genderM 1.39      4.00     1.16 1.2 0.23
## 
## Likelihood ratio test=1.71  on 1 df, p=0.192
## n= 14291, number of events= 4

14 RMSD : S10.6 Stambha - Hridaya Stambha

## Warning in .add_surv_median(p, fit, type = surv.median.line, fun = fun, :
## Median survival not reached.
## Warning in fitter(X, Y, strats, offset, init, control, weights = weights, :
## Loglik converged before variable 1 ; beta may be infinite.

14.1 Kaplan Meier table

## Call: survfit(formula = Surv(disdur, status) ~ patient_gender, data = tmp)
## 
##                 patient_gender=F 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     1   7935       0        1       0            1            1
##     2   4227       0        1       0            1            1
##     3   3394       0        1       0            1            1
##     4   2978       0        1       0            1            1
##     7   2296       0        1       0            1            1
##    13   1673       0        1       0            1            1
##    25    974       0        1       0            1            1
##    37    554       0        1       0            1            1
##    49    277       0        1       0            1            1
##    61    119       0        1       0            1            1
## 
##                 patient_gender=M 
##  time n.risk n.event survival  std.err lower 95% CI upper 95% CI
##     1   6356       1        1 0.000157            1            1
##     2   2964       0        1 0.000157            1            1
##     3   2388       0        1 0.000157            1            1
##     4   2124       0        1 0.000157            1            1
##     7   1688       0        1 0.000157            1            1
##    13   1228       0        1 0.000157            1            1
##    25    747       0        1 0.000157            1            1
##    37    444       0        1 0.000157            1            1
##    49    230       0        1 0.000157            1            1
##    61    110       0        1 0.000157            1            1

14.2 Survival plot

14.3 Hazard ratio plot

## Call:
## coxph(formula = Surv(disdur, status) ~ patient_gender, data = tmp)
## 
##                     coef exp(coef) se(coef) z p
## patient_genderM 1.94e+01  2.79e+08 1.49e+04 0 1
## 
## Likelihood ratio test=1.62  on 1 df, p=0.203
## n= 14291, number of events= 1
## Warning: Transformation introduced infinite values in continuous y-axis

## Warning: Transformation introduced infinite values in continuous y-axis

## Warning: Transformation introduced infinite values in continuous y-axis
## Warning: Removed 1 rows containing missing values (geom_text).

## Warning: Removed 1 rows containing missing values (geom_text).

## Warning: Removed 1 rows containing missing values (geom_text).

## Warning: Removed 1 rows containing missing values (geom_text).

## Warning: Removed 1 rows containing missing values (geom_text).

## Warning: Removed 1 rows containing missing values (geom_text).

15 RMSD : S13.0 Sthaanabhedena Graha

## Warning in .add_surv_median(p, fit, type = surv.median.line, fun = fun, :
## Median survival not reached.

15.1 Kaplan Meier table

## Call: survfit(formula = Surv(disdur, status) ~ patient_gender, data = tmp)
## 
##                 patient_gender=F 
##  time n.risk n.event survival  std.err lower 95% CI upper 95% CI
##     1   7935       5    0.999 0.000282        0.999            1
##     2   4222       1    0.999 0.000368        0.998            1
##     3   3388       0    0.999 0.000368        0.998            1
##     4   2972       0    0.999 0.000368        0.998            1
##     7   2290       0    0.999 0.000368        0.998            1
##    13   1669       0    0.999 0.000368        0.998            1
##    25    971       0    0.999 0.000368        0.998            1
##    37    551       0    0.999 0.000368        0.998            1
##    49    276       0    0.999 0.000368        0.998            1
##    61    119       0    0.999 0.000368        0.998            1
## 
##                 patient_gender=M 
##  time n.risk n.event survival  std.err lower 95% CI upper 95% CI
##     1   6356       7    0.999 0.000416        0.998            1
##     2   2961       1    0.999 0.000535        0.998            1
##     3   2385       0    0.999 0.000535        0.998            1
##     4   2121       0    0.999 0.000535        0.998            1
##     7   1686       1    0.998 0.000798        0.996            1
##    13   1226       0    0.998 0.000798        0.996            1
##    25    746       0    0.998 0.000798        0.996            1
##    37    443       0    0.998 0.000798        0.996            1
##    49    230       0    0.998 0.000798        0.996            1
##    61    110       0    0.998 0.000798        0.996            1

15.2 Survival plot

15.3 Hazard ratio plot

## Call:
## coxph(formula = Surv(disdur, status) ~ patient_gender, data = tmp)
## 
##                  coef exp(coef) se(coef)    z    p
## patient_genderM 0.651     1.918    0.527 1.23 0.22
## 
## Likelihood ratio test=1.57  on 1 df, p=0.211
## n= 14291, number of events= 15

16 RMSD : S13.1 Sthaanabhedena Graha - Anga Graha

## Warning in .add_surv_median(p, fit, type = surv.median.line, fun = fun, :
## Median survival not reached.

16.1 Kaplan Meier table

## Call: survfit(formula = Surv(disdur, status) ~ patient_gender, data = tmp)
## 
##                 patient_gender=F 
##  time n.risk n.event survival  std.err lower 95% CI upper 95% CI
##     1   7935       1        1 0.000126            1            1
##     2   4227       0        1 0.000126            1            1
##     3   3394       0        1 0.000126            1            1
##     4   2978       0        1 0.000126            1            1
##     7   2296       0        1 0.000126            1            1
##    13   1673       0        1 0.000126            1            1
##    25    974       0        1 0.000126            1            1
##    37    554       0        1 0.000126            1            1
##    49    277       0        1 0.000126            1            1
##    61    119       0        1 0.000126            1            1
## 
##                 patient_gender=M 
##  time n.risk n.event survival  std.err lower 95% CI upper 95% CI
##     1   6356       2    1.000 0.000222        0.999            1
##     2   2963       0    1.000 0.000222        0.999            1
##     3   2387       0    1.000 0.000222        0.999            1
##     4   2123       1    0.999 0.000521        0.998            1
##     7   1687       0    0.999 0.000521        0.998            1
##    13   1227       0    0.999 0.000521        0.998            1
##    25    746       0    0.999 0.000521        0.998            1
##    37    443       0    0.999 0.000521        0.998            1
##    49    230       0    0.999 0.000521        0.998            1
##    61    110       0    0.999 0.000521        0.998            1

16.2 Survival plot

16.3 Hazard ratio plot

## Call:
## coxph(formula = Surv(disdur, status) ~ patient_gender, data = tmp)
## 
##                 coef exp(coef) se(coef)    z    p
## patient_genderM 1.35      3.86     1.15 1.17 0.24
## 
## Likelihood ratio test=1.61  on 1 df, p=0.204
## n= 14291, number of events= 4

17 RMSD : S13.11 Sthaanabhedena Graha - Katee Graha

## Warning in .add_surv_median(p, fit, type = surv.median.line, fun = fun, :
## Median survival not reached.

17.1 Kaplan Meier table

## Call: survfit(formula = Surv(disdur, status) ~ patient_gender, data = tmp)
## 
##                 patient_gender=F 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     1   7935     315    0.960 0.00219        0.956        0.965
##     2   4074      57    0.947 0.00279        0.941        0.952
##     3   3228      24    0.940 0.00312        0.934        0.946
##     4   2811      14    0.935 0.00334        0.929        0.942
##     7   2134      20    0.927 0.00377        0.920        0.935
##    13   1531      15    0.920 0.00421        0.911        0.928
##    25    871      15    0.908 0.00507        0.899        0.918
##    37    484       2    0.906 0.00539        0.895        0.916
##    49    239       5    0.891 0.00835        0.875        0.908
##    61    100       1    0.886 0.00975        0.867        0.906
## 
##                 patient_gender=M 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     1   6356     387    0.939 0.00300        0.933        0.945
##     2   2814      41    0.925 0.00364        0.918        0.933
##     3   2229      14    0.920 0.00393        0.912        0.927
##     4   1965      10    0.915 0.00418        0.907        0.923
##     7   1538      25    0.901 0.00499        0.891        0.911
##    13   1099      13    0.892 0.00554        0.881        0.903
##    25    655      17    0.875 0.00674        0.862        0.889
##    37    381       5    0.866 0.00784        0.851        0.882
##    49    196       2    0.860 0.00885        0.843        0.878
##    61     89       0    0.860 0.00885        0.843        0.878

17.2 Survival plot

17.3 Hazard ratio plot

## Call:
## coxph(formula = Surv(disdur, status) ~ patient_gender, data = tmp)
## 
##                   coef exp(coef) se(coef)    z     p
## patient_genderM 0.3585    1.4312   0.0639 5.61 2e-08
## 
## Likelihood ratio test=31.5  on 1 df, p=2.02e-08
## n= 14291, number of events= 982

18 RMSD : S13.13 Sthaanabhedena Graha - Manyaa Graha

## Warning in .add_surv_median(p, fit, type = surv.median.line, fun = fun, :
## Median survival not reached.

18.1 Kaplan Meier table

## Call: survfit(formula = Surv(disdur, status) ~ patient_gender, data = tmp)
## 
##                 patient_gender=F 
##  time n.risk n.event survival  std.err lower 95% CI upper 95% CI
##     1   7935      16    0.998 0.000504        0.997        0.999
##     2   4220       0    0.998 0.000504        0.997        0.999
##     3   3387       0    0.998 0.000504        0.997        0.999
##     4   2971       0    0.998 0.000504        0.997        0.999
##     7   2289       0    0.998 0.000504        0.997        0.999
##    13   1667       0    0.998 0.000504        0.997        0.999
##    25    971       0    0.998 0.000504        0.997        0.999
##    37    551       0    0.998 0.000504        0.997        0.999
##    49    274       0    0.998 0.000504        0.997        0.999
##    61    116       0    0.998 0.000504        0.997        0.999
## 
##                 patient_gender=M 
##  time n.risk n.event survival  std.err lower 95% CI upper 95% CI
##     1   6356       7    0.999 0.000416        0.998            1
##     2   2962       0    0.999 0.000416        0.998            1
##     3   2386       0    0.999 0.000416        0.998            1
##     4   2122       0    0.999 0.000416        0.998            1
##     7   1686       0    0.999 0.000416        0.998            1
##    13   1226       0    0.999 0.000416        0.998            1
##    25    745       0    0.999 0.000416        0.998            1
##    37    442       0    0.999 0.000416        0.998            1
##    49    229       0    0.999 0.000416        0.998            1
##    61    110       0    0.999 0.000416        0.998            1

18.2 Survival plot

18.3 Hazard ratio plot

## Call:
## coxph(formula = Surv(disdur, status) ~ patient_gender, data = tmp)
## 
##                   coef exp(coef) se(coef)     z    p
## patient_genderM -0.605     0.546    0.453 -1.34 0.18
## 
## Likelihood ratio test=1.91  on 1 df, p=0.167
## n= 14291, number of events= 23

19 RMSD : S13.14 Sthaanabhedena Graha - Marma Graha

## Warning in .add_surv_median(p, fit, type = surv.median.line, fun = fun, :
## Median survival not reached.

19.1 Kaplan Meier table

## Call: survfit(formula = Surv(disdur, status) ~ patient_gender, data = tmp)
## 
##                 patient_gender=F 
##  time n.risk n.event survival  std.err lower 95% CI upper 95% CI
##     1   7935       2        1 0.000178        0.999            1
##     2   4226       0        1 0.000178        0.999            1
##     3   3393       0        1 0.000178        0.999            1
##     4   2977       0        1 0.000178        0.999            1
##     7   2295       0        1 0.000178        0.999            1
##    13   1672       0        1 0.000178        0.999            1
##    25    973       0        1 0.000178        0.999            1
##    37    554       0        1 0.000178        0.999            1
##    49    277       0        1 0.000178        0.999            1
##    61    119       0        1 0.000178        0.999            1
## 
##                 patient_gender=M 
##  time n.risk n.event survival  std.err lower 95% CI upper 95% CI
##     1   6356       1        1 0.000157            1            1
##     2   2963       0        1 0.000157            1            1
##     3   2387       0        1 0.000157            1            1
##     4   2123       0        1 0.000157            1            1
##     7   1687       0        1 0.000157            1            1
##    13   1227       0        1 0.000157            1            1
##    25    746       0        1 0.000157            1            1
##    37    443       0        1 0.000157            1            1
##    49    229       0        1 0.000157            1            1
##    61    110       0        1 0.000157            1            1

19.2 Survival plot

19.3 Hazard ratio plot

## Call:
## coxph(formula = Surv(disdur, status) ~ patient_gender, data = tmp)
## 
##                   coef exp(coef) se(coef)     z   p
## patient_genderM -0.471     0.624    1.225 -0.38 0.7
## 
## Likelihood ratio test=0.15  on 1 df, p=0.694
## n= 14291, number of events= 3

20 RMSD : S13.17 Sthaanabhedena Graha - Paada Graha

## Warning in .add_surv_median(p, fit, type = surv.median.line, fun = fun, :
## Median survival not reached.
## Warning in fitter(X, Y, strats, offset, init, control, weights = weights, :
## Loglik converged before variable 1 ; beta may be infinite.

20.1 Kaplan Meier table

## Call: survfit(formula = Surv(disdur, status) ~ patient_gender, data = tmp)
## 
##                 patient_gender=F 
##  time n.risk n.event survival  std.err lower 95% CI upper 95% CI
##     1   7935       3        1 0.000218        0.999            1
##     2   4225       0        1 0.000218        0.999            1
##     3   3392       0        1 0.000218        0.999            1
##     4   2976       0        1 0.000218        0.999            1
##     7   2294       0        1 0.000218        0.999            1
##    13   1671       0        1 0.000218        0.999            1
##    25    972       0        1 0.000218        0.999            1
##    37    553       0        1 0.000218        0.999            1
##    49    276       0        1 0.000218        0.999            1
##    61    119       0        1 0.000218        0.999            1
## 
##                 patient_gender=M 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     1   6356       0        1       0            1            1
##     2   2964       0        1       0            1            1
##     3   2388       0        1       0            1            1
##     4   2124       0        1       0            1            1
##     7   1688       0        1       0            1            1
##    13   1228       0        1       0            1            1
##    25    747       0        1       0            1            1
##    37    444       0        1       0            1            1
##    49    230       0        1       0            1            1
##    61    110       0        1       0            1            1

20.2 Survival plot

20.3 Hazard ratio plot

## Call:
## coxph(formula = Surv(disdur, status) ~ patient_gender, data = tmp)
## 
##                      coef exp(coef)  se(coef) z p
## patient_genderM -1.90e+01  5.60e-09  8.62e+03 0 1
## 
## Likelihood ratio test=3.53  on 1 df, p=0.0603
## n= 14291, number of events= 3
## Warning: Transformation introduced infinite values in continuous y-axis

## Warning: Transformation introduced infinite values in continuous y-axis

## Warning: Transformation introduced infinite values in continuous y-axis
## Warning: Removed 1 rows containing missing values (geom_text).

## Warning: Removed 1 rows containing missing values (geom_text).

## Warning: Removed 1 rows containing missing values (geom_text).

## Warning: Removed 1 rows containing missing values (geom_text).

## Warning: Removed 1 rows containing missing values (geom_text).

## Warning: Removed 1 rows containing missing values (geom_text).

21 RMSD : S13.18 Sthaanabhedena Graha - Paarshva Graha

## Warning in .add_surv_median(p, fit, type = surv.median.line, fun = fun, :
## Median survival not reached.
## Warning in fitter(X, Y, strats, offset, init, control, weights = weights, :
## Loglik converged before variable 1 ; beta may be infinite.

21.1 Kaplan Meier table

## Call: survfit(formula = Surv(disdur, status) ~ patient_gender, data = tmp)
## 
##                 patient_gender=F 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     1   7935       0        1       0            1            1
##     2   4227       0        1       0            1            1
##     3   3394       0        1       0            1            1
##     4   2978       0        1       0            1            1
##     7   2296       0        1       0            1            1
##    13   1673       0        1       0            1            1
##    25    974       0        1       0            1            1
##    37    554       0        1       0            1            1
##    49    277       0        1       0            1            1
##    61    119       0        1       0            1            1
## 
##                 patient_gender=M 
##  time n.risk n.event survival  std.err lower 95% CI upper 95% CI
##     1   6356       2    1.000 0.000222        0.999            1
##     2   2963       1    0.999 0.000404        0.999            1
##     3   2386       0    0.999 0.000404        0.999            1
##     4   2122       0    0.999 0.000404        0.999            1
##     7   1686       0    0.999 0.000404        0.999            1
##    13   1227       0    0.999 0.000404        0.999            1
##    25    746       0    0.999 0.000404        0.999            1
##    37    444       0    0.999 0.000404        0.999            1
##    49    230       0    0.999 0.000404        0.999            1
##    61    110       0    0.999 0.000404        0.999            1

21.2 Survival plot

21.3 Hazard ratio plot

## Call:
## coxph(formula = Surv(disdur, status) ~ patient_gender, data = tmp)
## 
##                     coef exp(coef) se(coef) z p
## patient_genderM 1.95e+01  2.95e+08 8.67e+03 0 1
## 
## Likelihood ratio test=5.01  on 1 df, p=0.0251
## n= 14291, number of events= 3
## Warning: Transformation introduced infinite values in continuous y-axis

## Warning: Transformation introduced infinite values in continuous y-axis

## Warning: Transformation introduced infinite values in continuous y-axis
## Warning: Removed 1 rows containing missing values (geom_text).

## Warning: Removed 1 rows containing missing values (geom_text).

## Warning: Removed 1 rows containing missing values (geom_text).

## Warning: Removed 1 rows containing missing values (geom_text).

## Warning: Removed 1 rows containing missing values (geom_text).

## Warning: Removed 1 rows containing missing values (geom_text).

22 RMSD : S13.19 Sthaanabhedena Graha - Prishtha Graha

## Warning in .add_surv_median(p, fit, type = surv.median.line, fun = fun, :
## Median survival not reached.

22.1 Kaplan Meier table

## Call: survfit(formula = Surv(disdur, status) ~ patient_gender, data = tmp)
## 
##                 patient_gender=F 
##  time n.risk n.event survival  std.err lower 95% CI upper 95% CI
##     1   7935      28    0.996 0.000666        0.995        0.998
##     2   4209       7    0.995 0.000913        0.993        0.997
##     3   3374       5    0.993 0.001125        0.991        0.996
##     4   2956       2    0.993 0.001220        0.990        0.995
##     7   2270       4    0.991 0.001445        0.988        0.994
##    13   1653       1    0.991 0.001527        0.988        0.994
##    25    962       2    0.989 0.001845        0.986        0.993
##    37    547       1    0.988 0.002296        0.983        0.992
##    49    272       0    0.988 0.002296        0.983        0.992
##    61    116       0    0.988 0.002296        0.983        0.992
## 
##                 patient_gender=M 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     1   6356      56    0.991 0.00117        0.989        0.993
##     2   2936       4    0.990 0.00135        0.987        0.992
##     3   2361       1    0.989 0.00141        0.987        0.992
##     4   2098       1    0.989 0.00149        0.986        0.992
##     7   1662       4    0.987 0.00184        0.983        0.990
##    13   1206       2    0.985 0.00209        0.981        0.989
##    25    731       1    0.984 0.00249        0.979        0.989
##    37    433       2    0.981 0.00333        0.974        0.987
##    49    223       0    0.981 0.00333        0.974        0.987
##    61    105       0    0.981 0.00333        0.974        0.987

22.2 Survival plot

22.3 Hazard ratio plot

## Call:
## coxph(formula = Surv(disdur, status) ~ patient_gender, data = tmp)
## 
##                  coef exp(coef) se(coef)   z       p
## patient_genderM 0.609     1.838    0.185 3.3 0.00098
## 
## Likelihood ratio test=11.1  on 1 df, p=0.000873
## n= 14291, number of events= 121

23 RMSD : S13.20 Sthaanabhedena Graha - Shiro Graha

## Warning in .add_surv_median(p, fit, type = surv.median.line, fun = fun, :
## Median survival not reached.
## Warning in fitter(X, Y, strats, offset, init, control, weights = weights, :
## Loglik converged before variable 1 ; beta may be infinite.

23.1 Kaplan Meier table

## Call: survfit(formula = Surv(disdur, status) ~ patient_gender, data = tmp)
## 
##                 patient_gender=F 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     1   7935       0        1       0            1            1
##     2   4227       0        1       0            1            1
##     3   3394       0        1       0            1            1
##     4   2978       0        1       0            1            1
##     7   2296       0        1       0            1            1
##    13   1673       0        1       0            1            1
##    25    974       0        1       0            1            1
##    37    554       0        1       0            1            1
##    49    277       0        1       0            1            1
##    61    119       0        1       0            1            1
## 
##                 patient_gender=M 
##  time n.risk n.event survival  std.err lower 95% CI upper 95% CI
##     1   6356       1        1 0.000157            1            1
##     2   2963       0        1 0.000157            1            1
##     3   2387       0        1 0.000157            1            1
##     4   2123       0        1 0.000157            1            1
##     7   1687       0        1 0.000157            1            1
##    13   1227       0        1 0.000157            1            1
##    25    746       0        1 0.000157            1            1
##    37    443       0        1 0.000157            1            1
##    49    229       0        1 0.000157            1            1
##    61    109       0        1 0.000157            1            1

23.2 Survival plot

23.3 Hazard ratio plot

## Call:
## coxph(formula = Surv(disdur, status) ~ patient_gender, data = tmp)
## 
##                     coef exp(coef) se(coef) z p
## patient_genderM 1.94e+01  2.79e+08 1.49e+04 0 1
## 
## Likelihood ratio test=1.62  on 1 df, p=0.203
## n= 14291, number of events= 1
## Warning: Transformation introduced infinite values in continuous y-axis

## Warning: Transformation introduced infinite values in continuous y-axis

## Warning: Transformation introduced infinite values in continuous y-axis
## Warning: Removed 1 rows containing missing values (geom_text).

## Warning: Removed 1 rows containing missing values (geom_text).

## Warning: Removed 1 rows containing missing values (geom_text).

## Warning: Removed 1 rows containing missing values (geom_text).

## Warning: Removed 1 rows containing missing values (geom_text).

## Warning: Removed 1 rows containing missing values (geom_text).

24 RMSD : S13.22 Sthaanabhedena Graha - Uro Graha

## Warning in .add_surv_median(p, fit, type = surv.median.line, fun = fun, :
## Median survival not reached.
## Warning in fitter(X, Y, strats, offset, init, control, weights = weights, :
## Loglik converged before variable 1 ; beta may be infinite.

24.1 Kaplan Meier table

## Call: survfit(formula = Surv(disdur, status) ~ patient_gender, data = tmp)
## 
##                 patient_gender=F 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     1   7935       0        1       0            1            1
##     2   4227       0        1       0            1            1
##     3   3394       0        1       0            1            1
##     4   2978       0        1       0            1            1
##     7   2296       0        1       0            1            1
##    13   1673       0        1       0            1            1
##    25    974       0        1       0            1            1
##    37    554       0        1       0            1            1
##    49    277       0        1       0            1            1
##    61    119       0        1       0            1            1
## 
##                 patient_gender=M 
##  time n.risk n.event survival  std.err lower 95% CI upper 95% CI
##     1   6356       1        1 0.000157            1            1
##     2   2963       0        1 0.000157            1            1
##     3   2387       0        1 0.000157            1            1
##     4   2123       0        1 0.000157            1            1
##     7   1688       0        1 0.000157            1            1
##    13   1228       0        1 0.000157            1            1
##    25    747       0        1 0.000157            1            1
##    37    444       0        1 0.000157            1            1
##    49    230       0        1 0.000157            1            1
##    61    110       0        1 0.000157            1            1

24.2 Survival plot

24.3 Hazard ratio plot

## Call:
## coxph(formula = Surv(disdur, status) ~ patient_gender, data = tmp)
## 
##                     coef exp(coef) se(coef) z p
## patient_genderM 1.94e+01  2.79e+08 1.49e+04 0 1
## 
## Likelihood ratio test=1.62  on 1 df, p=0.203
## n= 14291, number of events= 1
## Warning: Transformation introduced infinite values in continuous y-axis

## Warning: Transformation introduced infinite values in continuous y-axis

## Warning: Transformation introduced infinite values in continuous y-axis
## Warning: Removed 1 rows containing missing values (geom_text).

## Warning: Removed 1 rows containing missing values (geom_text).

## Warning: Removed 1 rows containing missing values (geom_text).

## Warning: Removed 1 rows containing missing values (geom_text).

## Warning: Removed 1 rows containing missing values (geom_text).

## Warning: Removed 1 rows containing missing values (geom_text).

25 RMSD : S13.23 Sthaanabhedena Graha - Vaak Graha

## Warning in .add_surv_median(p, fit, type = surv.median.line, fun = fun, :
## Median survival not reached.

25.1 Kaplan Meier table

## Call: survfit(formula = Surv(disdur, status) ~ patient_gender, data = tmp)
## 
##                 patient_gender=F 
##  time n.risk n.event survival  std.err lower 95% CI upper 95% CI
##     1   7935       1    1.000 0.000126        1.000            1
##     2   4227       0    1.000 0.000126        1.000            1
##     3   3394       0    1.000 0.000126        1.000            1
##     4   2978       0    1.000 0.000126        1.000            1
##     7   2296       0    1.000 0.000126        1.000            1
##    13   1672       2    0.999 0.000741        0.997            1
##    25    974       0    0.999 0.000741        0.997            1
##    37    554       0    0.999 0.000741        0.997            1
##    49    277       0    0.999 0.000741        0.997            1
##    61    119       0    0.999 0.000741        0.997            1
## 
##                 patient_gender=M 
##  time n.risk n.event survival  std.err lower 95% CI upper 95% CI
##     1   6356       5    0.999 0.000352        0.999        1.000
##     2   2963       0    0.999 0.000352        0.999        1.000
##     3   2387       0    0.999 0.000352        0.999        1.000
##     4   2123       0    0.999 0.000352        0.999        1.000
##     7   1686       2    0.998 0.000837        0.996        1.000
##    13   1227       1    0.997 0.001098        0.995        1.000
##    25    746       1    0.996 0.001729        0.993        0.999
##    37    443       0    0.996 0.001729        0.993        0.999
##    49    229       0    0.996 0.001729        0.993        0.999
##    61    110       0    0.996 0.001729        0.993        0.999

25.2 Survival plot

25.3 Hazard ratio plot

## Call:
## coxph(formula = Surv(disdur, status) ~ patient_gender, data = tmp)
## 
##                  coef exp(coef) se(coef)    z    p
## patient_genderM 1.367     3.925    0.667 2.05 0.04
## 
## Likelihood ratio test=4.97  on 1 df, p=0.0259
## n= 14291, number of events= 12

26 RMSD : S13.3 Sthaanabhedena Graha - Gala Graha

## Warning in .add_surv_median(p, fit, type = surv.median.line, fun = fun, :
## Median survival not reached.

26.1 Kaplan Meier table

## Call: survfit(formula = Surv(disdur, status) ~ patient_gender, data = tmp)
## 
##                 patient_gender=F 
##  time n.risk n.event survival  std.err lower 95% CI upper 95% CI
##     1   7935       3        1 0.000218        0.999            1
##     2   4227       0        1 0.000218        0.999            1
##     3   3394       0        1 0.000218        0.999            1
##     4   2978       0        1 0.000218        0.999            1
##     7   2296       0        1 0.000218        0.999            1
##    13   1673       0        1 0.000218        0.999            1
##    25    974       0        1 0.000218        0.999            1
##    37    554       0        1 0.000218        0.999            1
##    49    277       0        1 0.000218        0.999            1
##    61    119       0        1 0.000218        0.999            1
## 
##                 patient_gender=M 
##  time n.risk n.event survival  std.err lower 95% CI upper 95% CI
##     1   6356       1        1 0.000157            1            1
##     2   2964       0        1 0.000157            1            1
##     3   2388       0        1 0.000157            1            1
##     4   2124       0        1 0.000157            1            1
##     7   1688       0        1 0.000157            1            1
##    13   1228       0        1 0.000157            1            1
##    25    747       0        1 0.000157            1            1
##    37    444       0        1 0.000157            1            1
##    49    230       0        1 0.000157            1            1
##    61    110       0        1 0.000157            1            1

26.2 Survival plot

26.3 Hazard ratio plot

## Call:
## coxph(formula = Surv(disdur, status) ~ patient_gender, data = tmp)
## 
##                   coef exp(coef) se(coef)     z    p
## patient_genderM -0.877     0.416    1.155 -0.76 0.45
## 
## Likelihood ratio test=0.65  on 1 df, p=0.419
## n= 14291, number of events= 4

27 RMSD : S13.5 Sthaanabhedena Graha - Hanu Graha

## Warning in .add_surv_median(p, fit, type = surv.median.line, fun = fun, :
## Median survival not reached.
## Warning in fitter(X, Y, strats, offset, init, control, weights = weights, :
## Loglik converged before variable 1 ; beta may be infinite.

27.1 Kaplan Meier table

## Call: survfit(formula = Surv(disdur, status) ~ patient_gender, data = tmp)
## 
##                 patient_gender=F 
##  time n.risk n.event survival  std.err lower 95% CI upper 95% CI
##     1   7935       1        1 0.000126            1            1
##     2   4227       0        1 0.000126            1            1
##     3   3394       0        1 0.000126            1            1
##     4   2978       0        1 0.000126            1            1
##     7   2296       0        1 0.000126            1            1
##    13   1673       0        1 0.000126            1            1
##    25    974       0        1 0.000126            1            1
##    37    554       0        1 0.000126            1            1
##    49    277       0        1 0.000126            1            1
##    61    119       0        1 0.000126            1            1
## 
##                 patient_gender=M 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     1   6356       0        1       0            1            1
##     2   2964       0        1       0            1            1
##     3   2388       0        1       0            1            1
##     4   2124       0        1       0            1            1
##     7   1688       0        1       0            1            1
##    13   1228       0        1       0            1            1
##    25    747       0        1       0            1            1
##    37    444       0        1       0            1            1
##    49    230       0        1       0            1            1
##    61    110       0        1       0            1            1

27.2 Survival plot

27.3 Hazard ratio plot

## Call:
## coxph(formula = Surv(disdur, status) ~ patient_gender, data = tmp)
## 
##                      coef exp(coef)  se(coef) z p
## patient_genderM -1.90e+01  5.61e-09  1.49e+04 0 1
## 
## Likelihood ratio test=1.18  on 1 df, p=0.278
## n= 14291, number of events= 1
## Warning: Transformation introduced infinite values in continuous y-axis

## Warning: Transformation introduced infinite values in continuous y-axis

## Warning: Transformation introduced infinite values in continuous y-axis
## Warning: Removed 1 rows containing missing values (geom_text).

## Warning: Removed 1 rows containing missing values (geom_text).

## Warning: Removed 1 rows containing missing values (geom_text).

## Warning: Removed 1 rows containing missing values (geom_text).

## Warning: Removed 1 rows containing missing values (geom_text).

## Warning: Removed 1 rows containing missing values (geom_text).

28 RMSD : S13.6 Sthaanabhedena Graha - Hrid Graha

## Warning in .add_surv_median(p, fit, type = surv.median.line, fun = fun, :
## Median survival not reached.
## Warning in fitter(X, Y, strats, offset, init, control, weights = weights, :
## Loglik converged before variable 1 ; beta may be infinite.

28.1 Kaplan Meier table

## Call: survfit(formula = Surv(disdur, status) ~ patient_gender, data = tmp)
## 
##                 patient_gender=F 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     1   7935       0        1       0            1            1
##     2   4227       0        1       0            1            1
##     3   3394       0        1       0            1            1
##     4   2978       0        1       0            1            1
##     7   2296       0        1       0            1            1
##    13   1673       0        1       0            1            1
##    25    974       0        1       0            1            1
##    37    554       0        1       0            1            1
##    49    277       0        1       0            1            1
##    61    119       0        1       0            1            1
## 
##                 patient_gender=M 
##  time n.risk n.event survival  std.err lower 95% CI upper 95% CI
##     1   6356       1        1 0.000157            1            1
##     2   2963       0        1 0.000157            1            1
##     3   2387       0        1 0.000157            1            1
##     4   2123       0        1 0.000157            1            1
##     7   1687       0        1 0.000157            1            1
##    13   1228       0        1 0.000157            1            1
##    25    747       0        1 0.000157            1            1
##    37    444       0        1 0.000157            1            1
##    49    230       0        1 0.000157            1            1
##    61    110       0        1 0.000157            1            1

28.2 Survival plot

28.3 Hazard ratio plot

## Call:
## coxph(formula = Surv(disdur, status) ~ patient_gender, data = tmp)
## 
##                     coef exp(coef) se(coef) z p
## patient_genderM 1.94e+01  2.79e+08 1.49e+04 0 1
## 
## Likelihood ratio test=1.62  on 1 df, p=0.203
## n= 14291, number of events= 1
## Warning: Transformation introduced infinite values in continuous y-axis

## Warning: Transformation introduced infinite values in continuous y-axis

## Warning: Transformation introduced infinite values in continuous y-axis
## Warning: Removed 1 rows containing missing values (geom_text).

## Warning: Removed 1 rows containing missing values (geom_text).

## Warning: Removed 1 rows containing missing values (geom_text).

## Warning: Removed 1 rows containing missing values (geom_text).

## Warning: Removed 1 rows containing missing values (geom_text).

## Warning: Removed 1 rows containing missing values (geom_text).

29 RMSD : S13.7 Sthaanabhedena Graha - Jaanugraha

## Warning in .add_surv_median(p, fit, type = surv.median.line, fun = fun, :
## Median survival not reached.

29.1 Kaplan Meier table

## Call: survfit(formula = Surv(disdur, status) ~ patient_gender, data = tmp)
## 
##                 patient_gender=F 
##  time n.risk n.event survival  std.err lower 95% CI upper 95% CI
##     1   7935       4    0.999 0.000252        0.999            1
##     2   4223       0    0.999 0.000252        0.999            1
##     3   3391       0    0.999 0.000252        0.999            1
##     4   2975       0    0.999 0.000252        0.999            1
##     7   2293       0    0.999 0.000252        0.999            1
##    13   1671       0    0.999 0.000252        0.999            1
##    25    972       0    0.999 0.000252        0.999            1
##    37    553       0    0.999 0.000252        0.999            1
##    49    277       0    0.999 0.000252        0.999            1
##    61    119       0    0.999 0.000252        0.999            1
## 
##                 patient_gender=M 
##  time n.risk n.event survival  std.err lower 95% CI upper 95% CI
##     1   6356       1        1 0.000157            1            1
##     2   2963       0        1 0.000157            1            1
##     3   2388       0        1 0.000157            1            1
##     4   2124       0        1 0.000157            1            1
##     7   1688       0        1 0.000157            1            1
##    13   1228       0        1 0.000157            1            1
##    25    747       0        1 0.000157            1            1
##    37    444       0        1 0.000157            1            1
##    49    230       0        1 0.000157            1            1
##    61    110       0        1 0.000157            1            1

29.2 Survival plot

29.3 Hazard ratio plot

## Call:
## coxph(formula = Surv(disdur, status) ~ patient_gender, data = tmp)
## 
##                   coef exp(coef) se(coef)     z   p
## patient_genderM -1.165     0.312    1.118 -1.04 0.3
## 
## Likelihood ratio test=1.32  on 1 df, p=0.25
## n= 14291, number of events= 5

30 RMSD : S13.8 Sthaanabhedena Graha - Janghaa Graha

## Warning in .add_surv_median(p, fit, type = surv.median.line, fun = fun, :
## Median survival not reached.
## Warning in fitter(X, Y, strats, offset, init, control, weights = weights, :
## Loglik converged before variable 1 ; beta may be infinite.

30.1 Kaplan Meier table

## Call: survfit(formula = Surv(disdur, status) ~ patient_gender, data = tmp)
## 
##                 patient_gender=F 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     1   7935       0        1       0            1            1
##     2   4227       0        1       0            1            1
##     3   3394       0        1       0            1            1
##     4   2978       0        1       0            1            1
##     7   2296       0        1       0            1            1
##    13   1673       0        1       0            1            1
##    25    974       0        1       0            1            1
##    37    554       0        1       0            1            1
##    49    277       0        1       0            1            1
##    61    119       0        1       0            1            1
## 
##                 patient_gender=M 
##  time n.risk n.event survival  std.err lower 95% CI upper 95% CI
##     1   6356       2        1 0.000222        0.999            1
##     2   2963       0        1 0.000222        0.999            1
##     3   2387       0        1 0.000222        0.999            1
##     4   2123       0        1 0.000222        0.999            1
##     7   1687       0        1 0.000222        0.999            1
##    13   1227       0        1 0.000222        0.999            1
##    25    747       0        1 0.000222        0.999            1
##    37    444       0        1 0.000222        0.999            1
##    49    230       0        1 0.000222        0.999            1
##    61    110       0        1 0.000222        0.999            1

30.2 Survival plot

30.3 Hazard ratio plot

## Call:
## coxph(formula = Surv(disdur, status) ~ patient_gender, data = tmp)
## 
##                     coef exp(coef) se(coef) z p
## patient_genderM 1.94e+01  2.79e+08 1.06e+04 0 1
## 
## Likelihood ratio test=3.24  on 1 df, p=0.0718
## n= 14291, number of events= 2
## Warning: Transformation introduced infinite values in continuous y-axis

## Warning: Transformation introduced infinite values in continuous y-axis

## Warning: Transformation introduced infinite values in continuous y-axis
## Warning: Removed 1 rows containing missing values (geom_text).

## Warning: Removed 1 rows containing missing values (geom_text).

## Warning: Removed 1 rows containing missing values (geom_text).

## Warning: Removed 1 rows containing missing values (geom_text).

## Warning: Removed 1 rows containing missing values (geom_text).

## Warning: Removed 1 rows containing missing values (geom_text).