1 Metabolic : M10.0 Medoroga

## Warning in .add_surv_median(p, fit, type = surv.median.line, fun = fun, :
## Median survival not reached.

1.1 Kaplan Meier table

## Call: survfit(formula = Surv(disdur, status) ~ patient_gender, data = tmp)
## 
##                 patient_gender=F 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     1   2098      71    0.966 0.00395        0.958        0.974
##     2   1135       5    0.962 0.00437        0.953        0.970
##     3    953       2    0.960 0.00458        0.951        0.969
##     4    845       1    0.959 0.00472        0.950        0.968
##     7    671       3    0.955 0.00516        0.945        0.965
##    13    489       4    0.948 0.00614        0.936        0.960
##    25    292       0    0.948 0.00614        0.936        0.960
##    37    164       0    0.948 0.00614        0.936        0.960
##    49     77       0    0.948 0.00614        0.936        0.960
##    61     32       0    0.948 0.00614        0.936        0.960
## 
##                 patient_gender=M 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     1   2349      48    0.980 0.00292        0.974        0.985
##     2   1265       4    0.976 0.00330        0.970        0.983
##     3   1058       2    0.975 0.00354        0.968        0.982
##     4    952       0    0.975 0.00354        0.968        0.982
##     7    749       2    0.972 0.00395        0.964        0.980
##    13    542       6    0.963 0.00536        0.953        0.974
##    25    315       1    0.960 0.00615        0.948        0.972
##    37    197       0    0.960 0.00615        0.948        0.972
##    49     95       0    0.960 0.00615        0.948        0.972
##    61     48       0    0.960 0.00615        0.948        0.972

1.2 Survival plot

1.3 Hazard ratio plot

## Call:
## coxph(formula = Surv(disdur, status) ~ patient_gender, data = tmp)
## 
##                   coef exp(coef) se(coef)     z      p
## patient_genderM -0.429     0.651    0.166 -2.58 0.0097
## 
## Likelihood ratio test=6.78  on 1 df, p=0.00922
## n= 4447, number of events= 149

2 Metabolic : M10.1 Medoroga - Sthula medho roga

## Warning in .add_surv_median(p, fit, type = surv.median.line, fun = fun, :
## Median survival not reached.

2.1 Kaplan Meier table

## Call: survfit(formula = Surv(disdur, status) ~ patient_gender, data = tmp)
## 
##                 patient_gender=F 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     1   2098     302    0.856 0.00766        0.841        0.871
##     2   1039      33    0.829 0.00876        0.812        0.846
##     3    856      15    0.814 0.00938        0.796        0.833
##     4    746      11    0.802 0.00991        0.783        0.822
##     7    582      12    0.787 0.01066        0.766        0.808
##    13    430      12    0.768 0.01179        0.745        0.791
##    25    255      10    0.742 0.01394        0.715        0.770
##    37    138       4    0.725 0.01613        0.694        0.757
##    49     65       1    0.715 0.01865        0.679        0.753
##    61     28       2    0.686 0.02708        0.635        0.741
## 
##                 patient_gender=M 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     1   2349     170    0.928 0.00535        0.917        0.938
##     2   1201      20    0.912 0.00627        0.900        0.925
##     3    996       8    0.905 0.00674        0.892        0.918
##     4    892       4    0.901 0.00701        0.887        0.915
##     7    696       4    0.896 0.00735        0.882        0.911
##    13    501       4    0.890 0.00797        0.874        0.905
##    25    285       9    0.870 0.01020        0.850        0.890
##    37    176       5    0.851 0.01325        0.825        0.877
##    49     91       1    0.844 0.01486        0.815        0.873
##    61     44       0    0.844 0.01486        0.815        0.873

2.2 Survival plot

2.3 Hazard ratio plot

## Call:
## coxph(formula = Surv(disdur, status) ~ patient_gender, data = tmp)
## 
##                    coef exp(coef) se(coef)     z      p
## patient_genderM -0.7367    0.4787   0.0833 -8.85 <2e-16
## 
## Likelihood ratio test=82.1  on 1 df, p=0
## n= 4447, number of events= 627

3 Metabolic : M10.2 Medoroga - Sukshma medho roga

## Warning in .add_surv_median(p, fit, type = surv.median.line, fun = fun, :
## Median survival not reached.

3.1 Kaplan Meier table

## Call: survfit(formula = Surv(disdur, status) ~ patient_gender, data = tmp)
## 
##                 patient_gender=F 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     1   2098      35    0.983 0.00280        0.978        0.989
##     2   1158       3    0.981 0.00315        0.975        0.987
##     3    975       3    0.978 0.00359        0.971        0.985
##     4    861       2    0.975 0.00393        0.968        0.983
##     7    683       5    0.969 0.00488        0.959        0.979
##    13    499       1    0.967 0.00513        0.957        0.977
##    25    297       1    0.965 0.00557        0.954        0.976
##    37    172       0    0.965 0.00557        0.954        0.976
##    49     80       0    0.965 0.00557        0.954        0.976
##    61     34       0    0.965 0.00557        0.954        0.976
## 
##                 patient_gender=M 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     1   2349      96    0.959 0.00408        0.951        0.967
##     2   1235      12    0.950 0.00485        0.940        0.959
##     3   1030       8    0.942 0.00547        0.932        0.953
##     4    921       4    0.938 0.00582        0.927        0.950
##     7    720       8    0.929 0.00670        0.916        0.942
##    13    519      10    0.913 0.00818        0.897        0.929
##    25    296       4    0.904 0.00937        0.886        0.922
##    37    183       0    0.904 0.00937        0.886        0.922
##    49     89       1    0.895 0.01304        0.870        0.921
##    61     45       0    0.895 0.01304        0.870        0.921

3.2 Survival plot

3.3 Hazard ratio plot

## Call:
## coxph(formula = Surv(disdur, status) ~ patient_gender, data = tmp)
## 
##                  coef exp(coef) se(coef)    z       p
## patient_genderM 0.964     2.622    0.164 5.87 4.4e-09
## 
## Likelihood ratio test=39  on 1 df, p=4.19e-10
## n= 4447, number of events= 193

4 Metabolic : M2.0 Madhumeha

4.1 Kaplan Meier table

## Call: survfit(formula = Surv(disdur, status) ~ patient_gender, data = tmp)
## 
##                 patient_gender=F 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     1   2098     285    0.864 0.00748        0.850        0.879
##     2   1078      56    0.819 0.00919        0.801        0.837
##     3    890      32    0.790 0.01023        0.770        0.810
##     4    775      21    0.768 0.01096        0.747        0.790
##     7    602      43    0.719 0.01260        0.695        0.744
##    13    420      45    0.657 0.01454        0.629        0.686
##    25    239      29    0.600 0.01672        0.568        0.634
##    37    142      17    0.549 0.01946        0.512        0.588
##    49     63       4    0.527 0.02184        0.486        0.571
##    61     23       2    0.501 0.02746        0.450        0.558
## 
##                 patient_gender=M 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     1   2349     521    0.778 0.00857        0.762        0.795
##     2   1129      81    0.722 0.00995        0.703        0.742
##     3    921      49    0.684 0.01083        0.663        0.706
##     4    819      37    0.653 0.01147        0.631        0.676
##     7    620      60    0.597 0.01255        0.573        0.623
##    13    447      60    0.532 0.01373        0.506        0.560
##    25    244      58    0.446 0.01558        0.417        0.478
##    37    139      34    0.374 0.01734        0.342        0.410
##    49     73       6    0.356 0.01808        0.322        0.393
##    61     32       0    0.356 0.01808        0.322        0.393

4.2 Survival plot

4.3 Hazard ratio plot

## Call:
## coxph(formula = Surv(disdur, status) ~ patient_gender, data = tmp)
## 
##                   coef exp(coef) se(coef)    z      p
## patient_genderM 0.4750    1.6080   0.0546 8.71 <2e-16
## 
## Likelihood ratio test=78.3  on 1 df, p=0
## n= 4447, number of events= 1441

5 Metabolic : P5.0 Prameha

5.1 Kaplan Meier table

## Call: survfit(formula = Surv(disdur, status) ~ patient_gender, data = tmp)
## 
##                 patient_gender=F 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     1   2098     399    0.810 0.00857        0.793        0.827
##     2   1033      69    0.756 0.01017        0.736        0.776
##     3    833      29    0.729 0.01093        0.708        0.751
##     4    722      21    0.708 0.01155        0.686        0.731
##     7    551      22    0.683 0.01235        0.659        0.707
##    13    385      37    0.626 0.01444        0.598        0.655
##    25    208      36    0.550 0.01750        0.517        0.585
##    37    108      28    0.451 0.02238        0.409        0.497
##    49     47       6    0.417 0.02458        0.372        0.468
##    61     16       1    0.404 0.02705        0.355        0.461
## 
##                 patient_gender=M 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     1   2349     541    0.770 0.00869        0.753        0.787
##     2   1106      69    0.722 0.00988        0.703        0.741
##     3    902      29    0.698 0.01046        0.678        0.719
##     4    802      31    0.671 0.01113        0.650        0.694
##     7    593      48    0.623 0.01233        0.599        0.648
##    13    405      49    0.561 0.01395        0.534        0.589
##    25    213      46    0.482 0.01623        0.451        0.515
##    37    115      20    0.421 0.01920        0.385        0.461
##    49     45      14    0.357 0.02287        0.315        0.404
##    61     18       2    0.334 0.02652        0.286        0.391

5.2 Survival plot

5.3 Hazard ratio plot

## Call:
## coxph(formula = Surv(disdur, status) ~ patient_gender, data = tmp)
## 
##                   coef exp(coef) se(coef)    z       p
## patient_genderM 0.1866    1.2051   0.0522 3.58 0.00035
## 
## Likelihood ratio test=12.9  on 1 df, p=0.000332
## n= 4447, number of events= 1497

6 Metabolic : P5.1 Prameha - Krusha

## Warning in .add_surv_median(p, fit, type = surv.median.line, fun = fun, :
## Median survival not reached.

6.1 Kaplan Meier table

## Call: survfit(formula = Surv(disdur, status) ~ patient_gender, data = tmp)
## 
##                 patient_gender=F 
##  time n.risk n.event survival  std.err lower 95% CI upper 95% CI
##     1   2098       4    0.998 0.000952        0.996            1
##     2   1172       0    0.998 0.000952        0.996            1
##     3    988       0    0.998 0.000952        0.996            1
##     4    875       0    0.998 0.000952        0.996            1
##     7    697       0    0.998 0.000952        0.996            1
##    13    510       0    0.998 0.000952        0.996            1
##    25    306       0    0.998 0.000952        0.996            1
##    37    174       0    0.998 0.000952        0.996            1
##    49     82       0    0.998 0.000952        0.996            1
##    61     34       0    0.998 0.000952        0.996            1
## 
##                 patient_gender=M 
##  time n.risk n.event survival  std.err lower 95% CI upper 95% CI
##     1   2349       5    0.998 0.000951        0.996            1
##     2   1283       0    0.998 0.000951        0.996            1
##     3   1080       0    0.998 0.000951        0.996            1
##     4    975       0    0.998 0.000951        0.996            1
##     7    771       0    0.998 0.000951        0.996            1
##    13    564       0    0.998 0.000951        0.996            1
##    25    329       0    0.998 0.000951        0.996            1
##    37    205       0    0.998 0.000951        0.996            1
##    49    102       0    0.998 0.000951        0.996            1
##    61     50       0    0.998 0.000951        0.996            1

6.2 Survival plot

6.3 Hazard ratio plot

## Call:
## coxph(formula = Surv(disdur, status) ~ patient_gender, data = tmp)
## 
##                  coef exp(coef) se(coef)    z    p
## patient_genderM 0.110     1.117    0.671 0.16 0.87
## 
## Likelihood ratio test=0.03  on 1 df, p=0.869
## n= 4447, number of events= 9

7 Metabolic : P5.2 Prameha - Pidaka

## Warning in .add_surv_median(p, fit, type = surv.median.line, fun = fun, :
## Median survival not reached.

7.1 Kaplan Meier table

## Call: survfit(formula = Surv(disdur, status) ~ patient_gender, data = tmp)
## 
##                 patient_gender=F 
##  time n.risk n.event survival  std.err lower 95% CI upper 95% CI
##     1   2098       4    0.998 0.000952        0.996            1
##     2   1172       1    0.997 0.001277        0.995            1
##     3    989       0    0.997 0.001277        0.995            1
##     4    875       0    0.997 0.001277        0.995            1
##     7    697       0    0.997 0.001277        0.995            1
##    13    510       0    0.997 0.001277        0.995            1
##    25    306       0    0.997 0.001277        0.995            1
##    37    174       0    0.997 0.001277        0.995            1
##    49     82       0    0.997 0.001277        0.995            1
##    61     34       0    0.997 0.001277        0.995            1
## 
##                 patient_gender=M 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     1   2349      10    0.996 0.00134        0.993        0.998
##     2   1281       1    0.995 0.00155        0.992        0.998
##     3   1076       0    0.995 0.00155        0.992        0.998
##     4    971       0    0.995 0.00155        0.992        0.998
##     7    768       1    0.994 0.00192        0.990        0.998
##    13    563       0    0.994 0.00192        0.990        0.998
##    25    328       0    0.994 0.00192        0.990        0.998
##    37    205       0    0.994 0.00192        0.990        0.998
##    49    102       0    0.994 0.00192        0.990        0.998
##    61     50       0    0.994 0.00192        0.990        0.998

7.2 Survival plot

7.3 Hazard ratio plot

## Call:
## coxph(formula = Surv(disdur, status) ~ patient_gender, data = tmp)
## 
##                  coef exp(coef) se(coef)    z    p
## patient_genderM 0.767     2.153    0.532 1.44 0.15
## 
## Likelihood ratio test=2.26  on 1 df, p=0.133
## n= 4447, number of events= 17

8 Metabolic : P5.3 Prameha - Sthula

## Warning in .add_surv_median(p, fit, type = surv.median.line, fun = fun, :
## Median survival not reached.

8.1 Kaplan Meier table

## Call: survfit(formula = Surv(disdur, status) ~ patient_gender, data = tmp)
## 
##                 patient_gender=F 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     1   2098      19    0.991 0.00207        0.987        0.995
##     2   1164       3    0.988 0.00253        0.983        0.993
##     3    978       0    0.988 0.00253        0.983        0.993
##     4    865       0    0.988 0.00253        0.983        0.993
##     7    686       1    0.987 0.00282        0.982        0.993
##    13    501       0    0.987 0.00282        0.982        0.993
##    25    300       0    0.987 0.00282        0.982        0.993
##    37    172       0    0.987 0.00282        0.982        0.993
##    49     81       0    0.987 0.00282        0.982        0.993
##    61     34       0    0.987 0.00282        0.982        0.993
## 
##                 patient_gender=M 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     1   2349      15    0.994 0.00164        0.990        0.997
##     2   1277       0    0.994 0.00164        0.990        0.997
##     3   1072       0    0.994 0.00164        0.990        0.997
##     4    968       0    0.994 0.00164        0.990        0.997
##     7    763       1    0.992 0.00205        0.988        0.996
##    13    559       0    0.992 0.00205        0.988        0.996
##    25    325       3    0.985 0.00448        0.977        0.994
##    37    202       1    0.982 0.00560        0.971        0.993
##    49    101       0    0.982 0.00560        0.971        0.993
##    61     49       0    0.982 0.00560        0.971        0.993

8.2 Survival plot

8.3 Hazard ratio plot

## Call:
## coxph(formula = Surv(disdur, status) ~ patient_gender, data = tmp)
## 
##                   coef exp(coef) se(coef)     z    p
## patient_genderM -0.252     0.777    0.306 -0.83 0.41
## 
## Likelihood ratio test=0.68  on 1 df, p=0.408
## n= 4447, number of events= 43

9 Metabolic : P5.4 Prameha - Upadrava

## Warning in .add_surv_median(p, fit, type = surv.median.line, fun = fun, :
## Median survival not reached.

9.1 Kaplan Meier table

## Call: survfit(formula = Surv(disdur, status) ~ patient_gender, data = tmp)
## 
##                 patient_gender=F 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     1   2098      42    0.980 0.00306        0.974        0.986
##     2   1153       8    0.973 0.00387        0.966        0.981
##     3    967       1    0.972 0.00399        0.964        0.980
##     4    853       0    0.972 0.00399        0.964        0.980
##     7    677       1    0.971 0.00418        0.963        0.979
##    13    493       1    0.969 0.00444        0.961        0.978
##    25    295       4    0.960 0.00643        0.947        0.973
##    37    168       0    0.960 0.00643        0.947        0.973
##    49     78       0    0.960 0.00643        0.947        0.973
##    61     32       0    0.960 0.00643        0.947        0.973
## 
##                 patient_gender=M 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     1   2349      71    0.970 0.00353        0.963        0.977
##     2   1252       9    0.963 0.00420        0.955        0.971
##     3   1050       4    0.959 0.00457        0.950        0.968
##     4    946       2    0.957 0.00478        0.948        0.967
##     7    750       4    0.952 0.00534        0.942        0.963
##    13    544       1    0.951 0.00552        0.940        0.962
##    25    317       0    0.951 0.00552        0.940        0.962
##    37    197       1    0.947 0.00647        0.935        0.960
##    49     97       1    0.942 0.00854        0.925        0.959
##    61     46       0    0.942 0.00854        0.925        0.959

9.2 Survival plot

9.3 Hazard ratio plot

## Call:
## coxph(formula = Surv(disdur, status) ~ patient_gender, data = tmp)
## 
##                  coef exp(coef) se(coef)    z     p
## patient_genderM 0.385     1.469    0.168 2.29 0.022
## 
## Likelihood ratio test=5.36  on 1 df, p=0.0206
## n= 4447, number of events= 150

10 Metabolic : S16.0 Sthaulya

## Warning in .add_surv_median(p, fit, type = surv.median.line, fun = fun, :
## Median survival not reached.

10.1 Kaplan Meier table

## Call: survfit(formula = Surv(disdur, status) ~ patient_gender, data = tmp)
## 
##                 patient_gender=F 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     1   2098     429    0.796 0.00881        0.778        0.813
##     2   1030      56    0.752 0.01005        0.733        0.772
##     3    829      21    0.733 0.01062        0.713        0.754
##     4    728      16    0.717 0.01112        0.696        0.739
##     7    558      28    0.684 0.01222        0.661        0.709
##    13    396      13    0.665 0.01298        0.640        0.691
##    25    229      16    0.633 0.01469        0.605        0.662
##    37    132       3    0.621 0.01603        0.590        0.653
##    49     64       2    0.606 0.01858        0.571        0.644
##    61     27       0    0.606 0.01858        0.571        0.644
## 
##                 patient_gender=M 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     1   2349     306    0.870 0.00694        0.856        0.883
##     2   1188      40    0.840 0.00811        0.825        0.856
##     3    970      19    0.824 0.00879        0.807        0.841
##     4    861       8    0.816 0.00911        0.799        0.834
##     7    676      16    0.798 0.00996        0.779        0.818
##    13    482       5    0.791 0.01040        0.771        0.812
##    25    275       8    0.774 0.01189        0.751        0.797
##    37    167       2    0.767 0.01268        0.743        0.792
##    49     84       0    0.767 0.01268        0.743        0.792
##    61     44       0    0.767 0.01268        0.743        0.792

10.2 Survival plot

10.3 Hazard ratio plot

## Call:
## coxph(formula = Surv(disdur, status) ~ patient_gender, data = tmp)
## 
##                    coef exp(coef) se(coef)     z       p
## patient_genderM -0.5314    0.5878   0.0647 -8.21 2.2e-16
## 
## Likelihood ratio test=68.9  on 1 df, p=1.11e-16
## n= 4447, number of events= 989