Storms and other severe weather events can cause both public health and economic problems for communities and municipalities. Many severe events can result in fatalities, injuries, and property damage, and preventing such outcomes to the extent possible is a key concern.
This project involves exploring the U.S. National Oceanic and Atmospheric Administration’s (NOAA) storm database. This database tracks characteristics of major storms and weather events in the United States, including when and where they occur, as well as estimates of any fatalities, injuries, and property damage.
library(R.utils)
library(ggplot2)
library(dplyr)
setwd("H:/WINDOWS/system")
StormData <- read.csv("H:/WINDOWS/System/repdata-data-StormData.csv.bz2")
head(StormData)
## STATE__ BGN_DATE BGN_TIME TIME_ZONE COUNTY COUNTYNAME STATE
## 1 1 4/18/1950 0:00:00 0130 CST 97 MOBILE AL
## 2 1 4/18/1950 0:00:00 0145 CST 3 BALDWIN AL
## 3 1 2/20/1951 0:00:00 1600 CST 57 FAYETTE AL
## 4 1 6/8/1951 0:00:00 0900 CST 89 MADISON AL
## 5 1 11/15/1951 0:00:00 1500 CST 43 CULLMAN AL
## 6 1 11/15/1951 0:00:00 2000 CST 77 LAUDERDALE AL
## EVTYPE BGN_RANGE BGN_AZI BGN_LOCATI END_DATE END_TIME COUNTY_END
## 1 TORNADO 0 0
## 2 TORNADO 0 0
## 3 TORNADO 0 0
## 4 TORNADO 0 0
## 5 TORNADO 0 0
## 6 TORNADO 0 0
## COUNTYENDN END_RANGE END_AZI END_LOCATI LENGTH WIDTH F MAG FATALITIES
## 1 NA 0 14.0 100 3 0 0
## 2 NA 0 2.0 150 2 0 0
## 3 NA 0 0.1 123 2 0 0
## 4 NA 0 0.0 100 2 0 0
## 5 NA 0 0.0 150 2 0 0
## 6 NA 0 1.5 177 2 0 0
## INJURIES PROPDMG PROPDMGEXP CROPDMG CROPDMGEXP WFO STATEOFFIC ZONENAMES
## 1 15 25.0 K 0
## 2 0 2.5 K 0
## 3 2 25.0 K 0
## 4 2 2.5 K 0
## 5 2 2.5 K 0
## 6 6 2.5 K 0
## LATITUDE LONGITUDE LATITUDE_E LONGITUDE_ REMARKS REFNUM
## 1 3040 8812 3051 8806 1
## 2 3042 8755 0 0 2
## 3 3340 8742 0 0 3
## 4 3458 8626 0 0 4
## 5 3412 8642 0 0 5
## 6 3450 8748 0 0 6
The two types of data: PROPDMG, representing property damange and CROPDMG, representing crop damage. There are characters within the variables indicating how to convert to raw USD. H = Hundreds (x100), k = kilo (x1000), m = millions (x1,000,000), b = billions (x1,000,000,000), + = x1, - = x0, ? = x0, blank space = x0.
StormData.Damage <- StormData %>% select(EVTYPE, PROPDMG,PROPDMGEXP,CROPDMG,CROPDMGEXP)
#Create a vector of the type of characters found in the PROPDMGEXP variable
characters <- sort(unique(as.character(StormData.Damage$PROPDMGEXP)))
#Create a vector to correct the damage variables
correction <- c(0,0,0,1,10,10,10,10,10,10,10,10,10,10^9,10^2,10^2,10^3,10^6,10^6)
conversion.df <- data.frame(characters,correction)
#Adjust PROPDMG and CROPDMG based on indexed characters
StormData.Damage$PROP_ADJUST <- conversion.df$correction[match(StormData.Damage$PROPDMGEXP,conversion.df$characters)]
StormData.Damage$CROP_ADJUST <- conversion.df$correction[match(StormData.Damage$CROPDMGEXP,conversion.df$characters)]
StormData.Damage <- StormData.Damage %>% mutate(PROPDMG = PROPDMG*PROP_ADJUST) %>% mutate(CROPDMG = CROPDMG*CROP_ADJUST) %>% mutate(DMG_TOTAL = PROPDMG+CROPDMG)
StormData.TotalDamage <- StormData.Damage %>% group_by(EVTYPE) %>% summarise(DMG.EVTYPE.TOTAL=sum(DMG_TOTAL)) %>% arrange(-DMG.EVTYPE.TOTAL)
head(StormData.TotalDamage,10)
## # A tibble: 10 x 2
## EVTYPE DMG.EVTYPE.TOTAL
## <fct> <dbl>
## 1 FLOOD 150319678250
## 2 HURRICANE/TYPHOON 71913712800
## 3 TORNADO 57352117607
## 4 STORM SURGE 43323541000
## 5 FLASH FLOOD 17562132111
## 6 DROUGHT 15018672000
## 7 HURRICANE 14610229010
## 8 RIVER FLOOD 10148404500
## 9 ICE STORM 8967041810
## 10 TROPICAL STORM 8382236550
fatalities <- ggplot(StormData.fatal[1:10,], aes(x=reorder(EVTYPE, -Total_Fatalities), y=Total_Fatalities))+
geom_bar(stat="identity")+
theme(axis.text.x = element_text(angle=90, vjust=0.5, hjust=1))+
ggtitle("Total Fatalities: Top 10 Events") +labs(x="Type of Event", y="Total Fatalities")+
theme(axis.text.x = element_text(colour="grey20",size=12,angle=45,hjust=.5,vjust=.5,face="bold"),
axis.text.y = element_text(colour="grey20",size=12,angle=0,hjust=1,vjust=0,face="bold"),
axis.title.x = element_text(colour="grey20",size=12,angle=0,hjust=.5,vjust=0,face="bold"),
axis.title.y = element_text(colour="grey20",size=12,angle=90,hjust=.5,vjust=.5,face="bold"))+
theme(panel.background = element_rect(fill = "lightblue",colour = "lightblue",size = 0.5))
fatalities
injuries <- ggplot(StormData.injuries[1:10,], aes(x=reorder(EVTYPE, -Total_Injuries), y=Total_Injuries))+
geom_bar(stat="identity")+
theme(axis.text.x = element_text(angle=90, vjust=0.5, hjust=1))+
ggtitle("Total Injuries: Top 10 Events") +labs(x="Type of Event", y="Total Injuries")+
theme(axis.text.x = element_text(colour="grey20",size=12,angle=45,hjust=.5,vjust=.5,face="bold"),
axis.text.y = element_text(colour="grey20",size=12,angle=0,hjust=1,vjust=0,face="bold"),
axis.title.x = element_text(colour="grey20",size=12,angle=0,hjust=.5,vjust=0,face="bold"),
axis.title.y = element_text(colour="grey20",size=12,angle=90,hjust=.5,vjust=.5,face="bold"))+
theme(panel.background = element_rect(fill = "lightblue",colour = "lightblue",size = 0.5))
injuries
damage <- ggplot(StormData.TotalDamage[1:10,], aes(x=reorder(EVTYPE, -DMG.EVTYPE.TOTAL), y=DMG.EVTYPE.TOTAL))+
geom_bar(stat="identity")+
theme(axis.text.x = element_text(angle=90, vjust=0.5, hjust=1))+
ggtitle("Highest Economic Impact : Top 10 Events") +labs(x="Type of Event", y="Total Economic Impact (USD)")+
theme(axis.text.x = element_text(colour="grey20",size=12,angle=45,hjust=.5,vjust=.5,face="bold"),
axis.text.y = element_text(colour="grey20",size=12,angle=0,hjust=1,vjust=0,face="bold"),
axis.title.x = element_text(colour="grey20",size=12,angle=0,hjust=.5,vjust=0,face="bold"),
axis.title.y = element_text(colour="grey20",size=12,angle=90,hjust=.5,vjust=.5,face="bold"))+
theme(panel.background = element_rect(fill = "lightblue",colour = "lightblue",size = 0.5))
damage