Part I: Confirmatory Analyses

Mixed-effects models using baseline-corrected positive and negative affect

The models diplayed in the following blocks constitute our main exploratory vs. confirmatory test. Parameter estimates are derived from a computational model in which affect is construed as an integration of a subject’s most-recent exam grade outcomes and prediction errors, which are decayed by a term called gamma.

Separate gamma values were fit to our PA and NA models using our exploratory dataset. These gammas (PA: 0.94, NA: 0.98) are also used for our confirmatory tests.

PA mixed-effects model using exploratory dataset

PA_exp.lmer <- lmer(bc_pa ~ outcome + PE + ( 1 + outcome + PE | id), data = PA_exp, REML = TRUE)
summary(PA_exp.lmer)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: bc_pa ~ outcome + PE + (1 + outcome + PE | id)
##    Data: PA_exp
## 
## REML criterion at convergence: 7268
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -6.1545 -0.5106  0.0437  0.5353  3.2685 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev. Corr       
##  id       (Intercept) 427.319  20.672              
##           outcome       5.704   2.388   -0.90      
##           PE          165.706  12.873    0.45 -0.57
##  Residual             112.639  10.613              
## Number of obs: 926, groups:  id, 56
## 
## Fixed effects:
##             Estimate Std. Error      df t value Pr(>|t|)    
## (Intercept)  -1.2511     3.1306 48.0036  -0.400    0.691    
## outcome      -0.1063     0.3961 50.2942  -0.268    0.790    
## PE            9.3928     2.1718 40.8635   4.325 9.57e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##         (Intr) outcom
## outcome -0.889       
## PE       0.395 -0.523

NA mixed-effects model using exploratory dataset

NA_exp.lmer <- lmer(bc_na ~ outcome + PE + ( 1 + outcome + PE | id), data = NA_exp, REML = TRUE)
summary(NA_exp.lmer)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: bc_na ~ outcome + PE + (1 + outcome + PE | id)
##    Data: NA_exp
## 
## REML criterion at convergence: 7588.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.8759 -0.5264 -0.0717  0.5448  4.5116 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev. Corr       
##  id       (Intercept) 917.851  30.296              
##           outcome       9.692   3.113   -0.95      
##           PE          263.342  16.228    0.43 -0.59
##  Residual             165.671  12.871              
## Number of obs: 926, groups:  id, 56
## 
## Fixed effects:
##             Estimate Std. Error      df t value Pr(>|t|)    
## (Intercept)  19.8010     5.4945 38.3637   3.604  0.00089 ***
## outcome      -1.8893     0.6192 37.3363  -3.051  0.00418 ** 
## PE           -2.0575     2.6894 36.7953  -0.765  0.44913    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##         (Intr) outcom
## outcome -0.957       
## PE       0.445 -0.567

PA mixed-effects model using confirmatory dataset

PA_confrm.lmer <- lmer(bc_pa ~ outcome + PE + ( 1 + outcome + PE | id), data = PA_confrm, REML = TRUE)
summary(PA_confrm.lmer)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: bc_pa ~ outcome + PE + (1 + outcome + PE | id)
##    Data: PA_confrm
## 
## REML criterion at convergence: 10742.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.6023 -0.5259  0.0218  0.5549  4.5331 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev. Corr       
##  id       (Intercept) 123.301  11.104              
##           outcome       2.053   1.433   -0.50      
##           PE           33.292   5.770    0.12  0.22
##  Residual             154.990  12.449              
## Number of obs: 1325, groups:  id, 69
## 
## Fixed effects:
##             Estimate Std. Error      df t value Pr(>|t|)  
## (Intercept)   2.8074     1.9552 50.6470   1.436   0.1572  
## outcome      -0.1670     0.2676 44.3735  -0.624   0.5357  
## PE            1.8323     0.8695 38.4966   2.107   0.0417 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##         (Intr) outcom
## outcome -0.699       
## PE       0.216  0.018

NA mixed-effects model using confirmatory dataset

NA_confrm.lmer <- lmer(bc_na ~ outcome + PE + ( 1 + outcome + PE | id), data = NA_confrm, REML = TRUE)
summary(NA_confrm.lmer)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: bc_na ~ outcome + PE + (1 + outcome + PE | id)
##    Data: NA_confrm
## 
## REML criterion at convergence: 10968.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5850 -0.5364 -0.0024  0.4486  4.2201 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev. Corr       
##  id       (Intercept) 1512.67  38.893              
##           outcome       15.35   3.917   -0.97      
##           PE            42.15   6.492    0.76 -0.72
##  Residual              186.77  13.667              
## Number of obs: 1325, groups:  id, 69
## 
## Fixed effects:
##             Estimate Std. Error      df t value Pr(>|t|)
## (Intercept)   1.1274     6.3278 64.8564   0.178    0.859
## outcome       0.0906     0.6552 65.3254   0.138    0.890
## PE           -1.0607     1.0060 52.1507  -1.054    0.297
## 
## Correlation of Fixed Effects:
##         (Intr) outcom
## outcome -0.973       
## PE       0.755 -0.711

Parameter estimates for exploratory and confirmatory datasets

Exploratory PA model:

##           Estimate        SE       df     t_stat        p_Val
## outcome -0.1063078 0.3961097 50.29423 -0.2683798 7.895048e-01
## PE       9.3927900 2.1718084 40.86354  4.3248705 9.571879e-05

Prediction Error (PE) term is significant at a<0.0001

Confirmatory PA model:

##           Estimate        SE       df    t_stat      p_Val
## outcome -0.1670308 0.2675987 44.37348 -0.624184 0.53570285
## PE       1.8322969 0.8694858 38.49658  2.107334 0.04165618

Prediction Error (PE) term is significant at a<0.05

Exploratory NA model:

##          Estimate       SE       df     t_stat       p_Val
## outcome -1.889332 0.619186 37.33632 -3.0513157 0.004179788
## PE      -2.057517 2.689429 36.79527 -0.7650385 0.449127877

Outcome term is significant at a<0.5

Confirmatory NA model:

##            Estimate        SE       df    t_stat     p_Val
## outcome  0.09060443 0.6551913 65.32542  0.138287 0.8904390
## PE      -1.06071695 1.0059797 52.15070 -1.054412 0.2965551

No significant estimates for confirmatory NA model

Distribution of subject-fit gamma values (exploratory vs confirmatory)

Part II

Mean parameter estimates from subject-level models with individually-fit gamma values.

The following two plots depict parameter estimates for outcome and prediction error. Estimates are derived from single-subject fixed effects models, for which gammas are individually fit to each subject’s PA or NA measures.

Subjects with negative parameter estimates for Prediction Error term have been removed

Subjects with negative parameter estimates for Prediction Error term have been removed

The following two plots depict parameter estimates for prediction and prediction error (PE), as suggested by Robb. Estimates are derived from single-subject fixed effects models, for which gammas are individually fit to each subject’s PA or NA measures.

Subjects with negative parameter estimates for Prediction Error term have been removed

Subjects with negative parameter estimates for Prediction Error term have been removed

Part III

Comparing parameter estimates from Robb Rutledge’s decision task with estimates from post-grade experience sampling

Prediction (EV) and Prediction Error (RPE) parameter estimates from a model predicting the timecourse of positive affect are used in the scatter plots below. All parameter estimates are derived from models using gamma values that are fit to individual subjects.

Spearman’s rho: 0.206087 p-value: 0.3323898

Spearman’s rho: -0.3648619 p-value: 0.0795946