train <- read.csv(file=file.choose(), header=TRUE)
train1 <- read.csv(file=file.choose(), header=TRUE)
data <- train
attach(data)
sum(duplicated(movie_title)|duplicated(movie_title,fromLast=TRUE))
## [1] 239
length(unique(movie_title[duplicated(movie_title)|duplicated(movie_title,fromLast=TRUE)]))
## [1] 116
movie_title[duplicated(movie_title)|duplicated(movie_title,fromLast=TRUE)]
## [1] Spider-Man 3<U+00A0>
## [2] The Avengers<U+00A0>
## [3] King Kong<U+00A0>
## [4] Skyfall<U+00A0>
## [5] Alice in Wonderland<U+00A0>
## [6] Oz the Great and Powerful<U+00A0>
## [7] TRON: Legacy<U+00A0>
## [8] The Great Gatsby<U+00A0>
## [9] The Legend of Tarzan<U+00A0>
## [10] The Jungle Book<U+00A0>
## [11] The Lovers<U+00A0>
## [12] Godzilla Resurgence<U+00A0>
## [13] The Fast and the Furious<U+00A0>
## [14] The Legend of Tarzan<U+00A0>
## [15] Pan<U+00A0>
## [16] Ghostbusters<U+00A0>
## [17] Exodus: Gods and Kings<U+00A0>
## [18] The Twilight Saga: Breaking Dawn - Part 2<U+00A0>
## [19] The Twilight Saga: Breaking Dawn - Part 2<U+00A0>
## [20] Home<U+00A0>
## [21] Godzilla Resurgence<U+00A0>
## [22] Clash of the Titans<U+00A0>
## [23] Total Recall<U+00A0>
## [24] RoboCop<U+00A0>
## [25] Teenage Mutant Ninja Turtles<U+00A0>
## [26] Around the World in 80 Days<U+00A0>
## [27] The Island<U+00A0>
## [28] Casino Royale<U+00A0>
## [29] Planet of the Apes<U+00A0>
## [30] Pan<U+00A0>
## [31] The Tourist<U+00A0>
## [32] Hercules<U+00A0>
## [33] Point Break<U+00A0>
## [34] Cinderella<U+00A0>
## [35] The Lovely Bones<U+00A0>
## [36] The Alamo<U+00A0>
## [37] Ben-Hur<U+00A0>
## [38] Conan the Barbarian<U+00A0>
## [39] The Fast and the Furious<U+00A0>
## [40] Dredd<U+00A0>
## [41] Creepshow<U+00A0>
## [42] The Day the Earth Stood Still<U+00A0>
## [43] Hercules<U+00A0>
## [44] Total Recall<U+00A0>
## [45] Unbroken<U+00A0>
## [46] Jack Reacher<U+00A0>
## [47] Mercury Rising<U+00A0>
## [48] The Avengers<U+00A0>
## [49] Goosebumps<U+00A0>
## [50] The Watch<U+00A0>
## [51] Lolita<U+00A0>
## [52] Syriana<U+00A0>
## [53] Murder by Numbers<U+00A0>
## [54] The Host<U+00A0>
## [55] First Blood<U+00A0>
## [56] From Hell<U+00A0>
## [57] Across the Universe<U+00A0>
## [58] Dredd<U+00A0>
## [59] Victor Frankenstein<U+00A0>
## [60] Hero<U+00A0>
## [61] The Karate Kid<U+00A0>
## [62] Unbroken<U+00A0>
## [63] Unknown<U+00A0>
## [64] Victor Frankenstein<U+00A0>
## [65] Disturbia<U+00A0>
## [66] The Fast and the Furious<U+00A0>
## [67] Precious<U+00A0>
## [68] Twilight<U+00A0>
## [69] Aloha<U+00A0>
## [70] A Nightmare on Elm Street<U+00A0>
## [71] Poltergeist<U+00A0>
## [72] From Hell<U+00A0>
## [73] House of Wax<U+00A0>
## [74] Heist<U+00A0>
## [75] Sabotage<U+00A0>
## [76] The Lovers<U+00A0>
## [77] Snakes on a Plane<U+00A0>
## [78] Ghostbusters<U+00A0>
## [79] Dodgeball: A True Underdog Story<U+00A0>
## [80] Carrie<U+00A0>
## [81] Side Effects<U+00A0>
## [82] Wicker Park<U+00A0>
## [83] Chasing Liberty<U+00A0>
## [84] Glory<U+00A0>
## [85] Dawn of the Dead<U+00A0>
## [86] The Jungle Book<U+00A0>
## [87] Lucky Number Slevin<U+00A0>
## [88] Brothers<U+00A0>
## [89] The Omen<U+00A0>
## [90] The Gambler<U+00A0>
## [91] Eddie the Eagle<U+00A0>
## [92] My Soul to Take<U+00A0>
## [93] The Possession<U+00A0>
## [94] Snakes on a Plane<U+00A0>
## [95] Dangerous Liaisons<U+00A0>
## [96] Point Break<U+00A0>
## [97] Footloose<U+00A0>
## [98] King Kong<U+00A0>
## [99] Eddie the Eagle<U+00A0>
## [100] Chasing Liberty<U+00A0>
## [101] Forsaken<U+00A0>
## [102] Victor Frankenstein<U+00A0>
## [103] The Island<U+00A0>
## [104] Death at a Funeral<U+00A0>
## [105] Disturbia<U+00A0>
## [106] Wicker Park<U+00A0>
## [107] The French Connection<U+00A0>
## [108] Bad Moms<U+00A0>
## [109] Conan the Barbarian<U+00A0>
## [110] Twilight<U+00A0>
## [111] Death at a Funeral<U+00A0>
## [112] Left Behind<U+00A0>
## [113] Glory<U+00A0>
## [114] The Fog<U+00A0>
## [115] Hamlet<U+00A0>
## [116] Day of the Dead<U+00A0>
## [117] Forsaken<U+00A0>
## [118] Halloween<U+00A0>
## [119] Hero<U+00A0>
## [120] TRON: Legacy<U+00A0>
## [121] The Illusionist<U+00A0>
## [122] The Illusionist<U+00A0>
## [123] The Unborn<U+00A0>
## [124] Bad Moms<U+00A0>
## [125] Left Behind<U+00A0>
## [126] Trance<U+00A0>
## [127] Ben-Hur<U+00A0>
## [128] Halloween<U+00A0>
## [129] Big Fat Liar<U+00A0>
## [130] Snitch<U+00A0>
## [131] Aloha<U+00A0>
## [132] Halloween II<U+00A0>
## [133] The Last House on the Left<U+00A0>
## [134] Clash of the Titans<U+00A0>
## [135] The Love Letter<U+00A0>
## [136] The Possession<U+00A0>
## [137] First Blood<U+00A0>
## [138] Dangerous Liaisons<U+00A0>
## [139] Big Fat Liar<U+00A0>
## [140] Teenage Mutant Ninja Turtles<U+00A0>
## [141] Dekalog<U+00A0>
## [142] RoboCop<U+00A0>
## [143] Brothers<U+00A0>
## [144] The Claim<U+00A0>
## [145] Cat People<U+00A0>
## [146] Crossroads<U+00A0>
## [147] Casino Royale<U+00A0>
## [148] The Alamo<U+00A0>
## [149] The Host<U+00A0>
## [150] A Woman, a Gun and a Noodle Shop<U+00A0>
## [151] Home<U+00A0>
## [152] Snatch<U+00A0>
## [153] History of the World: Part I<U+00A0>
## [154] O<U+00A0>
## [155] Poltergeist<U+00A0>
## [156] Precious<U+00A0>
## [157] Snatch<U+00A0>
## [158] The Gift<U+00A0>
## [159] The Tourist<U+00A0>
## [160] Crash<U+00A0>
## [161] Dekalog<U+00A0>
## [162] The Texas Chain Saw Massacre<U+00A0>
## [163] Heist<U+00A0>
## [164] Footloose<U+00A0>
## [165] The Karate Kid<U+00A0>
## [166] Creepshow<U+00A0>
## [167] Syriana<U+00A0>
## [168] Crash<U+00A0>
## [169] Spider-Man 3<U+00A0>
## [170] Juno<U+00A0>
## [171] The Great Gatsby<U+00A0>
## [172] The Claim<U+00A0>
## [173] Skyfall<U+00A0>
## [174] The Return of the Living Dead<U+00A0>
## [175] Around the World in 80 Days<U+00A0>
## [176] Murder by Numbers<U+00A0>
## [177] The Gift<U+00A0>
## [178] 20,000 Leagues Under the Sea<U+00A0>
## [179] O<U+00A0>
## [180] Out of the Blue<U+00A0>
## [181] Saving Grace<U+00A0>
## [182] Out of the Blue<U+00A0>
## [183] Pan<U+00A0>
## [184] Night of the Living Dead<U+00A0>
## [185] Exodus: Gods and Kings<U+00A0>
## [186] The Return of the Living Dead<U+00A0>
## [187] Saving Grace<U+00A0>
## [188] Planet of the Apes<U+00A0>
## [189] My Soul to Take<U+00A0>
## [190] Ben-Hur<U+00A0>
## [191] Unknown<U+00A0>
## [192] The Full Monty<U+00A0>
## [193] Day of the Dead<U+00A0>
## [194] The Watch<U+00A0>
## [195] The Gambler<U+00A0>
## [196] Alice in Wonderland<U+00A0>
## [197] Cinderella<U+00A0>
## [198] The Omen<U+00A0>
## [199] Halloween II<U+00A0>
## [200] Dodgeball: A True Underdog Story<U+00A0>
## [201] The Calling<U+00A0>
## [202] The French Connection<U+00A0>
## [203] Lolita<U+00A0>
## [204] Hamlet<U+00A0>
## [205] Carrie<U+00A0>
## [206] A Nightmare on Elm Street<U+00A0>
## [207] Dawn of the Dead<U+00A0>
## [208] A Woman, a Gun and a Noodle Shop<U+00A0>
## [209] Jack Reacher<U+00A0>
## [210] Mercury Rising<U+00A0>
## [211] The Day the Earth Stood Still<U+00A0>
## [212] Lucky Number Slevin<U+00A0>
## [213] The Fog<U+00A0>
## [214] Juno<U+00A0>
## [215] The Full Monty<U+00A0>
## [216] Goosebumps<U+00A0>
## [217] History of the World: Part I<U+00A0>
## [218] The Lovely Bones<U+00A0>
## [219] Trance<U+00A0>
## [220] Snitch<U+00A0>
## [221] The Unborn<U+00A0>
## [222] King Kong<U+00A0>
## [223] House of Wax<U+00A0>
## [224] Home<U+00A0>
## [225] Crossroads<U+00A0>
## [226] Oz the Great and Powerful<U+00A0>
## [227] Halloween<U+00A0>
## [228] Across the Universe<U+00A0>
## [229] The Love Letter<U+00A0>
## [230] 20,000 Leagues Under the Sea<U+00A0>
## [231] Side Effects<U+00A0>
## [232] The Calling<U+00A0>
## [233] The Texas Chain Saw Massacre<U+00A0>
## [234] Cat People<U+00A0>
## [235] A Dog's Breakfast<U+00A0>
## [236] A Dog's Breakfast<U+00A0>
## [237] Night of the Living Dead<U+00A0>
## [238] The Last House on the Left<U+00A0>
## [239] Sabotage<U+00A0>
## 4818 Levels: #Horror<U+00A0> [Rec] 2<U+00A0> ... Zulu<U+00A0>
which(duplicated(movie_title)|duplicated(movie_title,fromLast=TRUE))
## [1] 7 18 25 30 33 38 40 50 63 78 83 96 98 134
## [15] 142 147 156 171 184 185 200 209 210 226 240 263 272 278
## [29] 279 294 296 305 309 326 327 338 357 378 383 416 418 456
## [43] 578 642 649 723 769 778 799 854 873 952 979 982 1039 1075
## [57] 1092 1101 1125 1149 1162 1198 1209 1280 1294 1307 1332 1352 1362 1393
## [71] 1411 1422 1424 1436 1465 1480 1502 1553 1566 1631 1637 1666 1674 1682
## [85] 1728 1773 1780 1820 1861 1906 1910 1928 1949 1959 1981 1985 1990 2011
## [99] 2021 2025 2035 2061 2067 2096 2127 2130 2140 2141 2153 2222 2251 2356
## [113] 2374 2376 2410 2423 2426 2446 2447 2453 2477 2487 2500 2516 2522 2538
## [127] 2564 2570 2579 2583 2590 2596 2598 2601 2660 2720 2721 2726 2747 2769
## [141] 2773 2785 2831 2836 2851 2884 2893 2920 2937 2955 2958 2965 2989 3011
## [155] 3016 3042 3062 3102 3114 3137 3150 3221 3258 3286 3292 3310 3322 3391
## [169] 3400 3402 3415 3419 3432 3515 3523 3586 3635 3641 3658 3718 3727 3767
## [183] 3804 3812 3816 3821 3825 3833 3840 3892 3906 3908 3925 3933 4039 4049
## [197] 4061 4070 4100 4120 4140 4143 4173 4199 4267 4269 4316 4323 4358 4377
## [211] 4400 4404 4442 4465 4473 4477 4481 4492 4538 4555 4587 4600 4601 4656
## [225] 4672 4681 4723 4744 4784 4796 4807 4829 4837 4843 4850 4851 4852 4871
## [239] 4911
too.much.work1 <- c()
too.much.work2 <- c()
too.much.work3 <- c()
for(i in 1:sum(duplicated(movie_title)|duplicated(movie_title,fromLast=TRUE))){
if(length(unique(director_name[movie_title==movie_title[duplicated(movie_title)|duplicated(movie_title,fromLast=TRUE)][i]]))==1) too.much.work1[i] <- TRUE else too.much.work1[i] <- FALSE
if(length(unique(content_rating[movie_title==movie_title[duplicated(movie_title)|duplicated(movie_title,fromLast=TRUE)][i]]))==1) too.much.work2[i] <- TRUE else too.much.work2[i] <- FALSE
if(length(unique(title_year[movie_title==movie_title[duplicated(movie_title)|duplicated(movie_title,fromLast=TRUE)][i]]))==1) too.much.work3[i] <- TRUE else too.much.work3[i] <- FALSE
}
sum(too.much.work1)
## [1] 235
sum(too.much.work2)
## [1] 235
sum(too.much.work3)
## [1] 235
which(!too.much.work1==TRUE)
## [1] 54 149 180 182
which(!too.much.work2==TRUE)
## [1] 54 149 180 182
which(!too.much.work3==TRUE)
## [1] 54 149 180 182
movie_title[duplicated(movie_title)|duplicated(movie_title,fromLast=TRUE)][c(54,149,180,182)]
## [1] The Host<U+00A0> The Host<U+00A0> Out of the Blue<U+00A0>
## [4] Out of the Blue<U+00A0>
## 4818 Levels: #Horror<U+00A0> [Rec] 2<U+00A0> ... Zulu<U+00A0>
director_name[movie_title==movie_title[duplicated(movie_title)|duplicated(movie_title,fromLast=TRUE)][c(54,149,180,182)]] #different director name
## Warning in is.na(e1) | is.na(e2): longer object length is not a multiple of
## shorter object length
## Warning in `==.default`(movie_title, movie_title[duplicated(movie_title)
## | : longer object length is not a multiple of shorter object length
## [1] Andrew Niccol Joon-ho Bong Robert Sarkies
## 2370 Levels: A. Raven Cruz Aaron Hann Aaron Schneider ... Zoran Lisinac
dupli.title <- movie_title[duplicated(movie_title)|duplicated(movie_title,fromLast=TRUE)][-c(54,149,180,182)]
unique.dupli<-unique(dupli.title)
length(unique(dupli.title))
## [1] 114
remain.dupli<-vector(length=length(unique(dupli.title)))
for(i in 1:length(unique(dupli.title))){
remain.dupli[i]<-which(movie_title==unique.dupli[i])
}
row.dupli<-which(duplicated(movie_title)|duplicated(movie_title,fromLast=TRUE))[-remain.dupli]
data<-train[-(row.dupli),]
write.csv(data, "movie_data.csv")
attach(data)
## The following objects are masked from data (pos = 3):
##
## actor_1_facebook_likes, actor_1_name, actor_2_facebook_likes,
## actor_2_name, actor_3_facebook_likes, actor_3_name,
## aspect_ratio, budget, cast_total_facebook_likes, color,
## content_rating, country, director_facebook_likes,
## director_name, duration, facenumber_in_poster, genres, gross,
## imdb_score, language, movie_facebook_likes, movie_imdb_link,
## movie_title, num_critic_for_reviews, num_user_for_reviews,
## num_voted_users, plot_keywords, title_year, X
sum(is.na(gross))
## [1] 821
sum(is.na(budget))
## [1] 461
sum(is.na(director_name)) #
## [1] 0
attach(data)
## The following objects are masked from data (pos = 3):
##
## actor_1_facebook_likes, actor_1_name, actor_2_facebook_likes,
## actor_2_name, actor_3_facebook_likes, actor_3_name,
## aspect_ratio, budget, cast_total_facebook_likes, color,
## content_rating, country, director_facebook_likes,
## director_name, duration, facenumber_in_poster, genres, gross,
## imdb_score, language, movie_facebook_likes, movie_imdb_link,
## movie_title, num_critic_for_reviews, num_user_for_reviews,
## num_voted_users, plot_keywords, title_year, X
## The following objects are masked from data (pos = 4):
##
## actor_1_facebook_likes, actor_1_name, actor_2_facebook_likes,
## actor_2_name, actor_3_facebook_likes, actor_3_name,
## aspect_ratio, budget, cast_total_facebook_likes, color,
## content_rating, country, director_facebook_likes,
## director_name, duration, facenumber_in_poster, genres, gross,
## imdb_score, language, movie_facebook_likes, movie_imdb_link,
## movie_title, num_critic_for_reviews, num_user_for_reviews,
## num_voted_users, plot_keywords, title_year, X
numeric.col<-c(4,5,6,7,9,14,15,17,20,24,26,27,29)
library(corrplot)
## corrplot 0.84 loaded
corr<-cor(data[,numeric.col])
corrplot.mixed(corr, number.cex=0.8)
corr.Y <- cor(data[,"imdb_score"],data[,numeric.col[-12]])
rownames(corr.Y) <- c("imdb_score")
corr.Y
## num_critic_for_reviews duration director_facebook_likes
## imdb_score NA NA NA
## actor_3_facebook_likes actor_1_facebook_likes num_voted_users
## imdb_score NA NA 0.4134778
## cast_total_facebook_likes facenumber_in_poster
## imdb_score 0.08629341 NA
## num_user_for_reviews budget actor_2_facebook_likes
## imdb_score NA NA NA
## movie_facebook_likes
## imdb_score 0.2539803
library(car)
facebook.likes<-data[,c(27, 9, 26, 7, 6, 15)]
lm.fit.facebook<-lm(facebook.likes$imdb_score~., data=facebook.likes)
vif(lm.fit.facebook)
## actor_1_facebook_likes actor_2_facebook_likes
## 247.807164 19.208739
## actor_3_facebook_likes director_facebook_likes
## 7.579070 1.021186
## cast_total_facebook_likes
## 351.797720
old.movies<-data[,c("imdb_score", "color", "title_year","aspect_ratio")]
lm.fit.old<-lm(old.movies$imdb_score~., data=old.movies)
vif(lm.fit.old)
## GVIF Df GVIF^(1/(2*Df))
## color 1.106442 2 1.025610
## title_year 1.129253 1 1.062663
## aspect_ratio 1.025579 1 1.012709
review.rating<-data[,c("imdb_score", "num_critic_for_reviews", "num_voted_users","num_user_for_reviews")]
lm.fit.rr<-lm(review.rating$imdb_score~., data=review.rating)
vif(lm.fit.rr)
## num_critic_for_reviews num_voted_users num_user_for_reviews
## 1.710255 3.069690 2.962483
facebook.likes1<-data[,c(27,9,26,7,6)]
lm.fit.facebook1<-lm(facebook.likes1$imdb_score~., data=facebook.likes1)
vif(lm.fit.facebook1)
## actor_1_facebook_likes actor_2_facebook_likes actor_3_facebook_likes
## 1.173507 1.560694 1.424685
## director_facebook_likes
## 1.020927
review.rating1<-data[,c("imdb_score", "num_critic_for_reviews", "num_voted_users")]
lm.fit.rr1<-lm(review.rating1$imdb_score~., data=review.rating1)
vif(lm.fit.rr1)
## num_critic_for_reviews num_voted_users
## 1.625615 1.625615
par(mfrow=c(1,2))
plot(budget)
plot(budget[!country=="USA"], col=2)
cor(imdb_score, log(budget))
## [1] NA
cor(imdb_score[country=="UK"],log(budget[country=="UK"]))
## [1] NA
cor(imdb_score[country=="France"],log(budget[country=="France"]))
## [1] NA
cor(imdb_score[country=="Canada"],log(budget[country=="Canada"]))
## [1] NA
cor(imdb_score[country=="Germany"],log(budget[country=="Germany"]))
## [1] NA
cor(imdb_score[country=="China"],log(budget[country=="China"]))
## [1] NA
plot(title_year, imdb_score)
abline(v=1979, col=2, lty=2)
abline(h=5, col=2, lty=2)
usa.budget<-budget[country=="USA"]
plot(log(usa.budget), imdb_score[country=="USA"])
abline(v=14, col=2, lty=2)
abline(h=4, col=2, lty=2)
exp(14)
## [1] 1202604
lm.fit.dir<-lm(imdb_score ~ director_facebook_likes)
lm.fit.tot<-lm(imdb_score ~ cast_total_facebook_likes)
par(mfrow=c(2,2))
plot(lm.fit.dir) #not bad
par(mfrow=c(2,2))
plot(lm.fit.tot) #1791
bind<-cbind(data[,"actor_1_facebook_likes"],
data[,"actor_2_facebook_likes"],
data[,"actor_3_facebook_likes"]
)
facebook.likes.median <- apply(bind,1, median)
facebook.likes.mean <- apply(bind,1, mean)
lm.fit.median <- lm(imdb_score ~ facebook.likes.median)
lm.fit.mean <- lm(imdb_score ~ facebook.likes.mean)
par(mfrow=c(2,2))
plot(lm.fit.median) #1147
par(mfrow=c(2,2))
plot(lm.fit.mean) #1791
bind<-cbind(data[,"actor_1_facebook_likes"],
data[,"actor_2_facebook_likes"],
data[,"actor_3_facebook_likes"]
)
facebook.likes.median <- apply(bind,1, median)
facebook.likes.mean <- apply(bind,1, mean)
median.lm.fit<-lm(facebook.likes.median~cast_total_facebook_likes)
mean.lm.fit<-lm(facebook.likes.mean~cast_total_facebook_likes)
facebook.likes.mean[1791]<-coef(mean.lm.fit)[2]*train[1791,"cast_total_facebook_likes"]
facebook.likes.median[1147]<-median(facebook.likes.median)
lm.fit.median <- lm(imdb_score ~ facebook.likes.median)
lm.fit.mean <- lm(imdb_score ~ facebook.likes.mean)
par(mfrow=c(2,2))
plot(lm.fit.median) #1147
par(mfrow=c(2,2))
plot(lm.fit.mean) #1791
data<-cbind(data, facebook.likes.median)
(cor(imdb_score, director_facebook_likes))
## [1] NA
(cor(imdb_score, actor_1_facebook_likes))
## [1] NA
(cor(imdb_score, actor_2_facebook_likes))
## [1] NA
(cor(imdb_score, actor_3_facebook_likes))
## [1] NA
(cor(imdb_score, facebook.likes.median))
## [1] NA
(cor(imdb_score, facebook.likes.mean))
## [1] NA
다 * 감독, 배우 1,2,3 facebook likes의 median을 취하는 새로운 변수 facebook.likes.median, 평균을 취한 facebook.likes.mean을 만들어봄 * outlier를 처리하고 잔차그림을 그려보니 잔차가 0을 중심으로 잘 분포되어 있ㅇ
bind<-cbind(log(data[,"actor_1_facebook_likes"]),
log(data[,"actor_2_facebook_likes"]),
log(data[,"actor_3_facebook_likes"])
)
(cor(imdb_score[-which(log(director_facebook_likes)==-Inf)], log(director_facebook_likes[-which(log(director_facebook_likes)==-Inf)])))
## [1] NA
(cor(imdb_score[-which(log(actor_1_facebook_likes)==-Inf)], log(actor_1_facebook_likes[-which(log(actor_1_facebook_likes)==-Inf)])))
## [1] NA
(cor(imdb_score[-which(log(actor_2_facebook_likes)==-Inf)], log(actor_2_facebook_likes[-which(log(actor_2_facebook_likes)==-Inf)])))
## [1] NA
(cor(imdb_score[-which(log(actor_3_facebook_likes)==-Inf)], log(actor_3_facebook_likes[-which(log(actor_3_facebook_likes)==-Inf)])))
## [1] NA
(cor(imdb_score[-which(facebook.likes.median==-Inf)], facebook.likes.median[-which(facebook.likes.median==-Inf)]))
## [1] NA
(cor(imdb_score[-which(facebook.likes.mean==-Inf)], facebook.likes.mean[-which(facebook.likes.mean==-Inf)]))
## [1] NA