Student Details

Loading Packages

library(readr)
library(reshape)
library(ggplot2)
library(rworldmap)
## Loading required package: sp
## ### Welcome to rworldmap ###
## For a short introduction type :   vignette('rworldmap')

Data & Proprecessing

getwd()
## [1] "/Users/mohammadrazzak/Documents/University/RMIT/dataviz/Assignment 2"
setwd("/Users/mohammadrazzak/Documents/University/RMIT/dataviz/Assignment 2")

library(readr)
GDP<- read.csv ("GDP.csv", header=T, sep=",") [-c(3,6:10)]

View(GDP)
names(GDP)
## [1] "X"             "Ranking"       "Economy"       "X.millions.of"
colnames(GDP) <- c("Country_Code", "Ranking", "Economy_Type", "Millions_of_US_Dollars")
names(GDP)
## [1] "Country_Code"           "Ranking"               
## [3] "Economy_Type"           "Millions_of_US_Dollars"
head(GDP)
sum(is.na(GDP))
## [1] 37
colSums(is.na(GDP))
##           Country_Code                Ranking           Economy_Type 
##                      0                     37                      0 
## Millions_of_US_Dollars 
##                      0
GDP_NA <- na.omit(GDP)
View(GDP_NA)
GDP_NA["Continents"] <-  c("North America","Asia", "Asia","Europe", "Europe","Europe","Asia","Europe","South America",
                             "North America","Asia", "Oceania","Europe", "Europe","North America", "Asia","Europe","Asia",
                             "Europe","Asia","South America","Europe","Africa","Europe","Europe","Asia","Asia","Europe",
                             "Europe","South America","Asia","Africa","Africa","Asia","Asia", "Asia","Europe","Asia",
                             "South America","Asia","Asia","South America","Europe","Europe","Europe","Europe","Asia","Asia",
                             "South America","Asia","Europe","Europe","Oceania","Asia","Asia","Africa","Europe","Asia",
                             "North America","Africa","South America","Africa","Europe","Europe","Africa","Asia","North America",
                             "Asia","North America","Asia","Asia","North America","Africa","Africa","Europe","Europe","South America",
                             "Asia","North America", "North America","Europe", "Europe","Asia","Asia","Africa", "Africa", "Europe", "Europe",
                             "Africa","Asia","Asia","Europe", "Asia","Africa","South America","Asia","Africa","Africa", "Africa",
                             "South America","South America","Europe", "Africa","North America","Europe","Africa","Asia","North America","Europe",
                             "Asia","Asia","Oceania","Europe","Europe", "Asia","Africa", "Africa", "Africa",
                             "North America","Europe","Africa","Africa", "Africa", "North America", "Asia", "Asia","Asia", "Africa","Africa",
                             "Europe", "Africa","Africa","Asia","Europe","Africa", "Europe","Africa","Africa","North America","North America",
                             "Africa", "Africa", "Africa","Asia", "Africa","Europe","Africa", "Asia","Africa","Europe", "Europe","Africa",
                             "North America", "Africa","South America", "Africa", "North America","Oceania", "Africa", "Africa","Europe",
                             "Europe",  "South America",  "Asia","Africa", "Europe","North America","Africa","Africa", "Asia", "North America",
                             "Africa", "Africa","Africa","Africa", "North America","Asia", "North America", "Oceania", "Africa","North America",
                             "North America", "Africa","Oceania","Oceania", "North America","Africa","North America","Oceania", "Africa",
                             "Oceania","Oceania","Oceania","Oceania","Oceania")


GDP_NA$Economy <- ifelse(GDP_NA$Ranking >=50, "Unstable Economy", "Stable Economy")
View(GDP_NA)
library(reshape)
mdata <- melt(GDP_NA)
## Using Country_Code, Economy_Type, Millions_of_US_Dollars, Continents, Economy as id variables
colnames(mdata)[colnames(mdata)=="value"] <- "GDP Ranking"
colnames(mdata)
## [1] "Country_Code"           "Economy_Type"          
## [3] "Millions_of_US_Dollars" "Continents"            
## [5] "Economy"                "variable"              
## [7] "GDP Ranking"

Visualisation

mapped_data <- joinCountryData2Map(mdata, joinCode = "ISO3", nameJoinColumn = "Country_Code")
## 188 codes from your data successfully matched countries in the map
## 7 codes from your data failed to match with a country code in the map
## 55 codes from the map weren't represented in your data
par(mai=c(0,0,0.2,0),xaxs="i",yaxs="i")
mapCountryData(mapped_data, nameColumnToPlot = "GDP Ranking")

##The visualisation.

The world map shows the GDP ratings of all the countries, If it is red that shows a lower GDP rating and Yellow has a highest GDP rating.