https://drive.google.com/open?id=1FaRmAhzU7LxdYAU8dPvxbbVpEDxI3uXp
Introduction
The dataset is sourced from https://data.world/worldbank/gdp-ranking and it is about the the GDP worth in US Dollars of countries based on the rankings The dataset will be used to create a visualisation that will check what countries have higher GDP in US Dollars as compared to countries with a lower GDP.
library(readr)
library(reshape)
library(ggplot2)
library(rworldmap)
## Loading required package: sp
## ### Welcome to rworldmap ###
## For a short introduction type : vignette('rworldmap')
getwd()
## [1] "/Users/mohammadrazzak/Documents/University/RMIT/dataviz/Assignment 2"
setwd("/Users/mohammadrazzak/Documents/University/RMIT/dataviz/Assignment 2")
library(readr)
GDP<- read.csv ("GDP.csv", header=T, sep=",") [-c(3,6:10)]
View(GDP)
names(GDP)
## [1] "X" "Ranking" "Economy" "X.millions.of"
colnames(GDP) <- c("Country_Code", "Ranking", "Economy_Type", "Millions_of_US_Dollars")
names(GDP)
## [1] "Country_Code" "Ranking"
## [3] "Economy_Type" "Millions_of_US_Dollars"
head(GDP)
sum(is.na(GDP))
## [1] 37
colSums(is.na(GDP))
## Country_Code Ranking Economy_Type
## 0 37 0
## Millions_of_US_Dollars
## 0
GDP_NA <- na.omit(GDP)
View(GDP_NA)
GDP_NA["Continents"] <- c("North America","Asia", "Asia","Europe", "Europe","Europe","Asia","Europe","South America",
"North America","Asia", "Oceania","Europe", "Europe","North America", "Asia","Europe","Asia",
"Europe","Asia","South America","Europe","Africa","Europe","Europe","Asia","Asia","Europe",
"Europe","South America","Asia","Africa","Africa","Asia","Asia", "Asia","Europe","Asia",
"South America","Asia","Asia","South America","Europe","Europe","Europe","Europe","Asia","Asia",
"South America","Asia","Europe","Europe","Oceania","Asia","Asia","Africa","Europe","Asia",
"North America","Africa","South America","Africa","Europe","Europe","Africa","Asia","North America",
"Asia","North America","Asia","Asia","North America","Africa","Africa","Europe","Europe","South America",
"Asia","North America", "North America","Europe", "Europe","Asia","Asia","Africa", "Africa", "Europe", "Europe",
"Africa","Asia","Asia","Europe", "Asia","Africa","South America","Asia","Africa","Africa", "Africa",
"South America","South America","Europe", "Africa","North America","Europe","Africa","Asia","North America","Europe",
"Asia","Asia","Oceania","Europe","Europe", "Asia","Africa", "Africa", "Africa",
"North America","Europe","Africa","Africa", "Africa", "North America", "Asia", "Asia","Asia", "Africa","Africa",
"Europe", "Africa","Africa","Asia","Europe","Africa", "Europe","Africa","Africa","North America","North America",
"Africa", "Africa", "Africa","Asia", "Africa","Europe","Africa", "Asia","Africa","Europe", "Europe","Africa",
"North America", "Africa","South America", "Africa", "North America","Oceania", "Africa", "Africa","Europe",
"Europe", "South America", "Asia","Africa", "Europe","North America","Africa","Africa", "Asia", "North America",
"Africa", "Africa","Africa","Africa", "North America","Asia", "North America", "Oceania", "Africa","North America",
"North America", "Africa","Oceania","Oceania", "North America","Africa","North America","Oceania", "Africa",
"Oceania","Oceania","Oceania","Oceania","Oceania")
GDP_NA$Economy <- ifelse(GDP_NA$Ranking >=50, "Unstable Economy", "Stable Economy")
View(GDP_NA)
library(reshape)
mdata <- melt(GDP_NA)
## Using Country_Code, Economy_Type, Millions_of_US_Dollars, Continents, Economy as id variables
colnames(mdata)[colnames(mdata)=="value"] <- "GDP Ranking"
colnames(mdata)
## [1] "Country_Code" "Economy_Type"
## [3] "Millions_of_US_Dollars" "Continents"
## [5] "Economy" "variable"
## [7] "GDP Ranking"
mapped_data <- joinCountryData2Map(mdata, joinCode = "ISO3", nameJoinColumn = "Country_Code")
## 188 codes from your data successfully matched countries in the map
## 7 codes from your data failed to match with a country code in the map
## 55 codes from the map weren't represented in your data
par(mai=c(0,0,0.2,0),xaxs="i",yaxs="i")
mapCountryData(mapped_data, nameColumnToPlot = "GDP Ranking")
##The visualisation.
The world map shows the GDP ratings of all the countries, If it is red that shows a lower GDP rating and Yellow has a highest GDP rating.