The objectives of this problem set is to orient you to a number of activities in R. And to conduct a thoughtful exercise in appreciating the importance of data visualization. For each question create a code chunk or text response that completes/answers the activity or question requested. Finally, upon completion name your final output .html file as: YourName_ANLY512-Section-Year-Semester.html and upload it to the Rpubs site and submit the link to the hosted file via Moodle.
anscombe data that is part of the library(datasets) in R. And assign that data to a new object called data.library(datasets)
data = anscombe
fBasics() package!)library(fBasics)
## Loading required package: timeDate
## Loading required package: timeSeries
basicStats(data)
## x1 x2 x3 x4 y1 y2
## nobs 11.000000 11.000000 11.000000 11.000000 11.000000 11.000000
## NAs 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
## Minimum 4.000000 4.000000 4.000000 8.000000 4.260000 3.100000
## Maximum 14.000000 14.000000 14.000000 19.000000 10.840000 9.260000
## 1. Quartile 6.500000 6.500000 6.500000 8.000000 6.315000 6.695000
## 3. Quartile 11.500000 11.500000 11.500000 8.000000 8.570000 8.950000
## Mean 9.000000 9.000000 9.000000 9.000000 7.500909 7.500909
## Median 9.000000 9.000000 9.000000 8.000000 7.580000 8.140000
## Sum 99.000000 99.000000 99.000000 99.000000 82.510000 82.510000
## SE Mean 1.000000 1.000000 1.000000 1.000000 0.612541 0.612568
## LCL Mean 6.771861 6.771861 6.771861 6.771861 6.136083 6.136024
## UCL Mean 11.228139 11.228139 11.228139 11.228139 8.865735 8.865795
## Variance 11.000000 11.000000 11.000000 11.000000 4.127269 4.127629
## Stdev 3.316625 3.316625 3.316625 3.316625 2.031568 2.031657
## Skewness 0.000000 0.000000 0.000000 2.466911 -0.048374 -0.978693
## Kurtosis -1.528926 -1.528926 -1.528926 4.520661 -1.199123 -0.514319
## y3 y4
## nobs 11.000000 11.000000
## NAs 0.000000 0.000000
## Minimum 5.390000 5.250000
## Maximum 12.740000 12.500000
## 1. Quartile 6.250000 6.170000
## 3. Quartile 7.980000 8.190000
## Mean 7.500000 7.500909
## Median 7.110000 7.040000
## Sum 82.500000 82.510000
## SE Mean 0.612196 0.612242
## LCL Mean 6.135943 6.136748
## UCL Mean 8.864057 8.865070
## Variance 4.122620 4.123249
## Stdev 2.030424 2.030579
## Skewness 1.380120 1.120774
## Kurtosis 1.240044 0.628751
colVars(data)
## x1 x2 x3 x4 y1 y2 y3
## 11.000000 11.000000 11.000000 11.000000 4.127269 4.127629 4.122620
## y4
## 4.123249
colMeans(data)
## x1 x2 x3 x4 y1 y2 y3 y4
## 9.000000 9.000000 9.000000 9.000000 7.500909 7.500909 7.500000 7.500909
plot(data$x1,data$y1,main="scatterplot between x1 and y1",xlab="x1",ylab="y1")
plot(data$x2,data$y2,main="scatterplot between x2 and y2",xlab="x2",ylab="y2")
plot(data$x2,data$y2,main="scatterplot between x3 and y3",xlab="x3",ylab="y3")
plot(data$x2,data$y2,main="scatterplot between x2 and y4",xlab="x4",ylab="y4")
attach(data)
par(mfrow=c(2,2))
plot(x1,y1, pch=19, main="Relationship between x1 and y1")
plot(x2,y2, pch=19, main="Relationship between x2 and y2")
plot(x3,y3, pch=19, main="Relationship between x3 and y3")
plot(x4,y4, pch=19, main="Relationship between x4 and y4")
lm() function.linear1 <- lm(y1 ~ x1, data=data)
linear2 <- lm(y2 ~ x2, data=data)
linear3 <- lm(y3 ~ x3, data=data)
linear4 <- lm(y4 ~ x4, data=data)
attach(data)
## The following objects are masked from data (pos = 3):
##
## x1, x2, x3, x4, y1, y2, y3, y4
par(mfrow=c(2,2))
plot(x1,y1, pch=19, main="Relationship between x1 and y1")
abline(linear1, pch=2, col="blue")
plot(x2,y2, pch=19, main="Relationship between x2 and y2")
abline(linear2, pch=2, col="blue")
plot(x3,y3, pch=19, main="Relationship between x3 and y3")
abline(linear3, pch=2, col="blue")
plot(x4,y4, pch=19, main="Relationship between x4 and y4")
abline(linear4, pch=2, col="blue")
summary(linear1) #p-value:0.00217 #Coefficients= (Intercept):3.001 data$x1: 0.5001
Call: lm(formula = y1 ~ x1, data = data)
Residuals: Min 1Q Median 3Q Max -1.92127 -0.45577 -0.04136 0.70941 1.83882
Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.0001 1.1247 2.667 0.02573 * x1 0.5001 0.1179 4.241 0.00217 ** — Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1
Residual standard error: 1.237 on 9 degrees of freedom Multiple R-squared: 0.6665, Adjusted R-squared: 0.6295 F-statistic: 17.99 on 1 and 9 DF, p-value: 0.00217
summary(linear2) #p-value: 0.002179 #Coefficients= (Intercept):3.001 data$x2: 0.500
Call: lm(formula = y2 ~ x2, data = data)
Residuals: Min 1Q Median 3Q Max -1.9009 -0.7609 0.1291 0.9491 1.2691
Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.001 1.125 2.667 0.02576 * x2 0.500 0.118 4.239 0.00218 ** — Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1
Residual standard error: 1.237 on 9 degrees of freedom Multiple R-squared: 0.6662, Adjusted R-squared: 0.6292 F-statistic: 17.97 on 1 and 9 DF, p-value: 0.002179
summary(linear3) #p-value: 0.002176 #Coefficients= (Intercept):3.0025 data$x3: 0.4997
Call: lm(formula = y3 ~ x3, data = data)
Residuals: Min 1Q Median 3Q Max -1.1586 -0.6146 -0.2303 0.1540 3.2411
Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.0025 1.1245 2.670 0.02562 * x3 0.4997 0.1179 4.239 0.00218 ** — Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1
Residual standard error: 1.236 on 9 degrees of freedom Multiple R-squared: 0.6663, Adjusted R-squared: 0.6292 F-statistic: 17.97 on 1 and 9 DF, p-value: 0.002176
summary(linear4) #p-value:0.002165 #Coefficients= (Intercept):3.0017 data$x4: 0.4999
Call: lm(formula = y4 ~ x4, data = data)
Residuals: Min 1Q Median 3Q Max -1.751 -0.831 0.000 0.809 1.839
Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.0017 1.1239 2.671 0.02559 * x4 0.4999 0.1178 4.243 0.00216 ** — Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1
Residual standard error: 1.236 on 9 degrees of freedom Multiple R-squared: 0.6667, Adjusted R-squared: 0.6297 F-statistic: 18 on 1 and 9 DF, p-value: 0.002165
The first step to understand the dataset usually uses description analysis. We can observe the data size, mean and data range. We also can build the model to see the p-value and co-efficients. Even the dataset of mean, data range, p-value and co-efficient are very similar with other dataset. However, it becomes clear that the datasets are markedly different after visualizing the data . The effectiveness of Anscombe’s Quartet is to quickly review the dataset and can prevent us not make the wrong conclusion.