Objectives

The objectives of this problem set is to orient you to a number of activities in R. And to conduct a thoughtful exercise in appreciating the importance of data visualization. For each question create a code chunk or text response that completes/answers the activity or question requested. Finally, upon completion name your final output .html file as: YourName_ANLY512-Section-Year-Semester.html and upload it to the Rpubs site and submit the link to the hosted file via Moodle.

Questions

  1. Anscombes quartet is a set of 4 \(x,y\) data sets that were published by Francis Anscombe in a 1973 paper Graphs in statistical analysis. For this first question load the anscombe data that is part of the library(datasets) in R. And assign that data to a new object called data.
library(datasets)
data = anscombe
  1. Summarise the data by calculating the mean, variance, for each column and the correlation between each pair (eg. x1 and y1, x2 and y2, etc) (Hint: use the fBasics() package!)
library(fBasics)
## Loading required package: timeDate
## Loading required package: timeSeries
basicStats(data)
##                    x1        x2        x3        x4        y1        y2
## nobs        11.000000 11.000000 11.000000 11.000000 11.000000 11.000000
## NAs          0.000000  0.000000  0.000000  0.000000  0.000000  0.000000
## Minimum      4.000000  4.000000  4.000000  8.000000  4.260000  3.100000
## Maximum     14.000000 14.000000 14.000000 19.000000 10.840000  9.260000
## 1. Quartile  6.500000  6.500000  6.500000  8.000000  6.315000  6.695000
## 3. Quartile 11.500000 11.500000 11.500000  8.000000  8.570000  8.950000
## Mean         9.000000  9.000000  9.000000  9.000000  7.500909  7.500909
## Median       9.000000  9.000000  9.000000  8.000000  7.580000  8.140000
## Sum         99.000000 99.000000 99.000000 99.000000 82.510000 82.510000
## SE Mean      1.000000  1.000000  1.000000  1.000000  0.612541  0.612568
## LCL Mean     6.771861  6.771861  6.771861  6.771861  6.136083  6.136024
## UCL Mean    11.228139 11.228139 11.228139 11.228139  8.865735  8.865795
## Variance    11.000000 11.000000 11.000000 11.000000  4.127269  4.127629
## Stdev        3.316625  3.316625  3.316625  3.316625  2.031568  2.031657
## Skewness     0.000000  0.000000  0.000000  2.466911 -0.048374 -0.978693
## Kurtosis    -1.528926 -1.528926 -1.528926  4.520661 -1.199123 -0.514319
##                    y3        y4
## nobs        11.000000 11.000000
## NAs          0.000000  0.000000
## Minimum      5.390000  5.250000
## Maximum     12.740000 12.500000
## 1. Quartile  6.250000  6.170000
## 3. Quartile  7.980000  8.190000
## Mean         7.500000  7.500909
## Median       7.110000  7.040000
## Sum         82.500000 82.510000
## SE Mean      0.612196  0.612242
## LCL Mean     6.135943  6.136748
## UCL Mean     8.864057  8.865070
## Variance     4.122620  4.123249
## Stdev        2.030424  2.030579
## Skewness     1.380120  1.120774
## Kurtosis     1.240044  0.628751
colVars(data)
##        x1        x2        x3        x4        y1        y2        y3 
## 11.000000 11.000000 11.000000 11.000000  4.127269  4.127629  4.122620 
##        y4 
##  4.123249
colMeans(data)
##       x1       x2       x3       x4       y1       y2       y3       y4 
## 9.000000 9.000000 9.000000 9.000000 7.500909 7.500909 7.500000 7.500909
  1. Create scatter plots for each \(x, y\) pair of data.
plot(data$x1,data$y1,main="scatterplot between x1 and y1",xlab="x1",ylab="y1")

plot(data$x2,data$y2,main="scatterplot between x2 and y2",xlab="x2",ylab="y2")

plot(data$x2,data$y2,main="scatterplot between x3 and y3",xlab="x3",ylab="y3")

plot(data$x2,data$y2,main="scatterplot between x2 and y4",xlab="x4",ylab="y4")

  1. Now change the symbols on the scatter plots to solid circles and plot them together as a 4 panel graphic
attach(data)
par(mfrow=c(2,2))
plot(x1,y1, pch=19, main="Relationship between x1 and y1")
plot(x2,y2, pch=19, main="Relationship between x2 and y2")
plot(x3,y3, pch=19, main="Relationship between x3 and y3")
plot(x4,y4, pch=19, main="Relationship between x4 and y4")

  1. Now fit a linear model to each data set using the lm() function.
linear1 <- lm(y1 ~ x1, data=data)

linear2 <- lm(y2 ~ x2, data=data)

linear3 <- lm(y3 ~ x3, data=data)

linear4 <- lm(y4 ~ x4, data=data)
  1. Now combine the last two tasks. Create a four panel scatter plot matrix that has both the data points and the regression lines. (hint: the model objects will carry over chunks!)
attach(data)
## The following objects are masked from data (pos = 3):
## 
##     x1, x2, x3, x4, y1, y2, y3, y4
par(mfrow=c(2,2))
plot(x1,y1, pch=19, main="Relationship between x1 and y1")
abline(linear1, pch=2, col="blue")
plot(x2,y2, pch=19, main="Relationship between x2 and y2")
abline(linear2, pch=2, col="blue")
plot(x3,y3, pch=19, main="Relationship between x3 and y3")
abline(linear3, pch=2, col="blue")
plot(x4,y4, pch=19, main="Relationship between x4 and y4")
abline(linear4, pch=2, col="blue")

  1. Now compare the model fits for each model object.
summary(linear1) #p-value:0.00217 #Coefficients= (Intercept):3.001 data$x1: 0.5001

Call: lm(formula = y1 ~ x1, data = data)

Residuals: Min 1Q Median 3Q Max -1.92127 -0.45577 -0.04136 0.70941 1.83882

Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.0001 1.1247 2.667 0.02573 * x1 0.5001 0.1179 4.241 0.00217 ** — Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1

Residual standard error: 1.237 on 9 degrees of freedom Multiple R-squared: 0.6665, Adjusted R-squared: 0.6295 F-statistic: 17.99 on 1 and 9 DF, p-value: 0.00217

summary(linear2) #p-value: 0.002179 #Coefficients= (Intercept):3.001  data$x2: 0.500

Call: lm(formula = y2 ~ x2, data = data)

Residuals: Min 1Q Median 3Q Max -1.9009 -0.7609 0.1291 0.9491 1.2691

Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.001 1.125 2.667 0.02576 * x2 0.500 0.118 4.239 0.00218 ** — Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1

Residual standard error: 1.237 on 9 degrees of freedom Multiple R-squared: 0.6662, Adjusted R-squared: 0.6292 F-statistic: 17.97 on 1 and 9 DF, p-value: 0.002179

summary(linear3) #p-value: 0.002176 #Coefficients= (Intercept):3.0025  data$x3: 0.4997

Call: lm(formula = y3 ~ x3, data = data)

Residuals: Min 1Q Median 3Q Max -1.1586 -0.6146 -0.2303 0.1540 3.2411

Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.0025 1.1245 2.670 0.02562 * x3 0.4997 0.1179 4.239 0.00218 ** — Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1

Residual standard error: 1.236 on 9 degrees of freedom Multiple R-squared: 0.6663, Adjusted R-squared: 0.6292 F-statistic: 17.97 on 1 and 9 DF, p-value: 0.002176

summary(linear4) #p-value:0.002165  #Coefficients= (Intercept):3.0017  data$x4: 0.4999

Call: lm(formula = y4 ~ x4, data = data)

Residuals: Min 1Q Median 3Q Max -1.751 -0.831 0.000 0.809 1.839

Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.0017 1.1239 2.671 0.02559 * x4 0.4999 0.1178 4.243 0.00216 ** — Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1

Residual standard error: 1.236 on 9 degrees of freedom Multiple R-squared: 0.6667, Adjusted R-squared: 0.6297 F-statistic: 18 on 1 and 9 DF, p-value: 0.002165

  1. In text, summarize the lesson of Anscombe’s Quartet and what it says about the value of data visualization.

The first step to understand the dataset usually uses description analysis. We can observe the data size, mean and data range. We also can build the model to see the p-value and co-efficients. Even the dataset of mean, data range, p-value and co-efficient are very similar with other dataset. However, it becomes clear that the datasets are markedly different after visualizing the data . The effectiveness of Anscombe’s Quartet is to quickly review the dataset and can prevent us not make the wrong conclusion.