The objectives of this problem set is to orient you to a number of activities in R. And to conduct a thoughtful exercise in appreciating the importance of data visualization. For each question create a code chunk or text response that completes/answers the activity or question requested.
anscombe data that is part of the library(datasets) in R. And assign that data to a new object called data.data("anscombe")
data<-anscombe
fBasics() package!)library('fBasics')
## Warning: package 'fBasics' was built under R version 3.4.4
## Loading required package: timeDate
## Warning: package 'timeDate' was built under R version 3.4.4
## Loading required package: timeSeries
## Warning: package 'timeSeries' was built under R version 3.4.4
colMeans(data)
## x1 x2 x3 x4 y1 y2 y3 y4
## 9.000000 9.000000 9.000000 9.000000 7.500909 7.500909 7.500000 7.500909
colVars(data)
## x1 x2 x3 x4 y1 y2 y3
## 11.000000 11.000000 11.000000 11.000000 4.127269 4.127629 4.122620
## y4
## 4.123249
correlationTest(data$x1,data$y1)
##
## Title:
## Pearson's Correlation Test
##
## Test Results:
## PARAMETER:
## Degrees of Freedom: 9
## SAMPLE ESTIMATES:
## Correlation: 0.8164
## STATISTIC:
## t: 4.2415
## P VALUE:
## Alternative Two-Sided: 0.00217
## Alternative Less: 0.9989
## Alternative Greater: 0.001085
## CONFIDENCE INTERVAL:
## Two-Sided: 0.4244, 0.9507
## Less: -1, 0.9388
## Greater: 0.5113, 1
##
## Description:
## Mon May 21 21:46:21 2018
correlationTest(data$x2,data$y2)
##
## Title:
## Pearson's Correlation Test
##
## Test Results:
## PARAMETER:
## Degrees of Freedom: 9
## SAMPLE ESTIMATES:
## Correlation: 0.8162
## STATISTIC:
## t: 4.2386
## P VALUE:
## Alternative Two-Sided: 0.002179
## Alternative Less: 0.9989
## Alternative Greater: 0.001089
## CONFIDENCE INTERVAL:
## Two-Sided: 0.4239, 0.9506
## Less: -1, 0.9387
## Greater: 0.5109, 1
##
## Description:
## Mon May 21 21:46:21 2018
correlationTest(data$x3,data$y3)
##
## Title:
## Pearson's Correlation Test
##
## Test Results:
## PARAMETER:
## Degrees of Freedom: 9
## SAMPLE ESTIMATES:
## Correlation: 0.8163
## STATISTIC:
## t: 4.2394
## P VALUE:
## Alternative Two-Sided: 0.002176
## Alternative Less: 0.9989
## Alternative Greater: 0.001088
## CONFIDENCE INTERVAL:
## Two-Sided: 0.4241, 0.9507
## Less: -1, 0.9387
## Greater: 0.511, 1
##
## Description:
## Mon May 21 21:46:21 2018
correlationTest(data$x4,data$y4)
##
## Title:
## Pearson's Correlation Test
##
## Test Results:
## PARAMETER:
## Degrees of Freedom: 9
## SAMPLE ESTIMATES:
## Correlation: 0.8165
## STATISTIC:
## t: 4.243
## P VALUE:
## Alternative Two-Sided: 0.002165
## Alternative Less: 0.9989
## Alternative Greater: 0.001082
## CONFIDENCE INTERVAL:
## Two-Sided: 0.4246, 0.9507
## Less: -1, 0.9388
## Greater: 0.5115, 1
##
## Description:
## Mon May 21 21:46:21 2018
The correlation between x1 and y1, x2 and y2, x3 and y3, and x4 and y4 is 0.8164, 0.8162, 0.8163, 0.8165. There is a high correlation for all the pairs.
plot(data$x1, data$y1, main = "Scatter Plot: x1 vs y1",xlab="x1",ylab="y1")
plot(data$x2, data$y2, main = "Scatter Plot: x2 vs y2",xlab="x2",ylab="y2")
plot(data$x3, data$y3, main = "Scatter Plot: x3 vs y3",xlab="x3",ylab="y3")
plot(data$x4, data$y4, main = "Scatter Plot: x4 vs y4",xlab="x4",ylab="y4")
par(mfrow=c(2,2))
plot(data$x1, data$y1, main = "Scatter Plot: x1 vs y1",xlab="x1",ylab="y1",pch=20)
plot(data$x2, data$y2, main = "Scatter Plot: x2 vs y2",xlab="x2",ylab="y2",pch=20)
plot(data$x3, data$y3, main = "Scatter Plot: x3 vs y3",xlab="x3",ylab="y3",pch=20)
plot(data$x4, data$y4, main = "Scatter Plot: x4 vs y4",xlab="x4",ylab="y4",pch=20)
lm() function.lm1<-lm(data$y1~data$x1)
lm2<-lm(data$y2~data$x2)
lm3<-lm(data$y3~data$x3)
lm4<-lm(data$y4~data$x4)
par(mfrow=c(2,2))
plot(data$x1, data$y1, main = "Scatter Plot: x1 vs y1",xlab="x1",ylab="y1",pch=20)
abline(lm1)
plot(data$x2, data$y2, main = "Scatter Plot: x2 vs y2",xlab="x2",ylab="y2",pch=20)
abline(lm2)
plot(data$x3, data$y3, main = "Scatter Plot: x3 vs y3",xlab="x3",ylab="y3",pch=20)
abline(lm3)
plot(data$x4, data$y4, main = "Scatter Plot: x4 vs y4",xlab="x4",ylab="y4",pch=20)
abline(lm4)
qqnorm(lm1$residuals)
qqline(lm1$residuals)
shapiro.test(lm1$residuals)
Shapiro-Wilk normality test
data: lm1$residuals W = 0.94211, p-value = 0.5456
qqnorm(lm2$residuals)
qqline(lm2$residuals)
shapiro.test(lm2$residuals)
Shapiro-Wilk normality test
data: lm2$residuals W = 0.87615, p-value = 0.09295
qqnorm(lm3$residuals)
qqline(lm3$residuals)
shapiro.test(lm3$residuals)
Shapiro-Wilk normality test
data: lm3$residuals W = 0.74073, p-value = 0.001574
qqnorm(lm4$residuals)
qqline(lm4$residuals)
shapiro.test(lm4$residuals)
Shapiro-Wilk normality test
data: lm4$residuals W = 0.96067, p-value = 0.78
Anscombe’s Quartet tell us that data visualization is very important to interpret data results. Statistics and graphs need to be looked at simultaneously. The correlation and regression statistics show that the relationships each pair shares is the same. But visual graphs show a completely different picture. Hence it is essential to interpre data using both statistics and graphs.