Understanding the dataset

We have been provided with 2 sets of data - training data with 17 columns from V1 to V17 which are independent and a dependent variable DV of 2053 records, as well as test data with 16 columns and the dependent variable DV, it contains columns V1,V3..V17 and so, V2 is missing in the test data set. First step is to read the data into R. The dataset is related to loan approved and we must predict the loan value for the next customer.

##setwd("/Volumes/Untitled/My Money Mantra/week 1")
library(readxl)
train <- read_excel('Training DataSet.xlsx')
test <- read_excel('Test DataSet.xlsx')

Summarise the data

Summarize the dataset Create summary statistics (e.g. mean, standard deviation, median, mode) for the important variables in the dataset using summary() and describe().

summary(train)
##    Unique Id          DV               V1            V2        
##  Min.   :   1   Min.   :147000   Min.   :720   Min.   :0.0000  
##  1st Qu.: 514   1st Qu.:359000   1st Qu.:826   1st Qu.:0.0000  
##  Median :1027   Median :429000   Median :846   Median :0.0000  
##  Mean   :1027   Mean   :469718   Mean   :841   Mean   :0.3229  
##  3rd Qu.:1540   3rd Qu.:631000   3rd Qu.:865   3rd Qu.:1.0000  
##  Max.   :2053   Max.   :750000   Max.   :900   Max.   :1.0000  
##        V3              V4               V5                 V6        
##  Min.   :25.00   Min.   :0.0000   Min.   :       0   Min.   :0.0000  
##  1st Qu.:34.00   1st Qu.:0.0000   1st Qu.:       0   1st Qu.:0.0000  
##  Median :38.00   Median :0.0000   Median :       0   Median :0.0000  
##  Mean   :39.57   Mean   :0.4632   Mean   : 1451935   Mean   :0.2284  
##  3rd Qu.:45.00   3rd Qu.:1.0000   3rd Qu.: 2095000   3rd Qu.:0.0000  
##  Max.   :55.00   Max.   :7.0000   Max.   :65903173   Max.   :5.0000  
##        V7                 V8               V9               V10        
##  Min.   :       0   Min.   :0.0000   Min.   :      0   Min.   :0.0000  
##  1st Qu.:       0   1st Qu.:0.0000   1st Qu.:      0   1st Qu.:0.0000  
##  Median :       0   Median :0.0000   Median :      0   Median :0.0000  
##  Mean   :  589706   Mean   :0.1851   Mean   :  73091   Mean   :0.2333  
##  3rd Qu.:       0   3rd Qu.:0.0000   3rd Qu.:      0   3rd Qu.:0.0000  
##  Max.   :65903173   Max.   :4.0000   Max.   :3280000   Max.   :3.0000  
##       V11               V12                V13           
##  Min.   :      0   Min.   :0.000000   Min.   :        0  
##  1st Qu.:      0   1st Qu.:0.000000   1st Qu.:        0  
##  Median :      0   Median :0.000000   Median :        0  
##  Mean   : 156946   Mean   :0.004871   Mean   :   109939  
##  3rd Qu.:      0   3rd Qu.:0.000000   3rd Qu.:        0  
##  Max.   :9837000   Max.   :4.000000   Max.   :212300000  
##       V14                V15               V16             V17         
##  Min.   :0.000000   Min.   :      0   Min.   :0.000   Min.   :      0  
##  1st Qu.:0.000000   1st Qu.:      0   1st Qu.:1.000   1st Qu.:      0  
##  Median :0.000000   Median :      0   Median :1.000   Median :      0  
##  Mean   :0.001948   Mean   :   1578   Mean   :1.462   Mean   :  71375  
##  3rd Qu.:0.000000   3rd Qu.:      0   3rd Qu.:2.000   3rd Qu.: 100000  
##  Max.   :2.000000   Max.   :2000000   Max.   :8.000   Max.   :1000000
library(psych)
describe(train)
##           vars    n       mean         sd median   trimmed       mad
## Unique Id    1 2053    1027.00     592.79   1027   1027.00    760.57
## DV           2 2053  469717.97  182934.74 429000 471056.00 167533.80
## V1           3 2053     840.95      31.98    846    844.83     28.17
## V2           4 2053       0.32       0.47      0      0.28      0.00
## V3           5 2053      39.57       7.24     38     39.12      7.41
## V4           6 2053       0.46       0.70      0      0.34      0.00
## V5           7 2053 1451935.30 3496999.73      0 767185.53      0.00
## V6           8 2053       0.23       0.57      0      0.09      0.00
## V7           9 2053  589705.59 2548663.35      0 112362.36      0.00
## V8          10 2053       0.19       0.46      0      0.07      0.00
## V9          11 2053   73091.07  257067.17      0   6960.86      0.00
## V10         12 2053       0.23       0.52      0      0.12      0.00
## V11         13 2053  156946.12  494897.47      0  45234.46      0.00
## V12         14 2053       0.00       0.11      0      0.00      0.00
## V13         15 2053  109939.11 4688422.41      0      0.00      0.00
## V14         16 2053       0.00       0.05      0      0.00      0.00
## V15         17 2053    1578.18   49620.82      0      0.00      0.00
## V16         18 2053       1.46       0.73      1      1.45      1.48
## V17         19 2053   71374.77  122206.63      0  44145.67      0.00
##              min       max     range  skew kurtosis        se
## Unique Id      1      2053      2052  0.00    -1.20     13.08
## DV        147000    750000    603000  0.24    -0.92   4037.40
## V1           720       900       180 -1.19     1.52      0.71
## V2             0         1         1  0.76    -1.43      0.01
## V3            25        55        30  0.47    -0.78      0.16
## V4             0         7         7  1.99     7.53      0.02
## V5             0  65903173  65903173  7.76    98.52  77179.35
## V6             0         5         5  3.26    14.02      0.01
## V7             0  65903173  65903173 13.62   275.56  56249.41
## V8             0         4         4  2.76     8.95      0.01
## V9             0   3280000   3280000  5.80    45.18   5673.51
## V10            0         3         3  2.42     6.23      0.01
## V11            0   9837000   9837000  7.97   107.09  10922.47
## V12            0         4         4 29.22   978.49      0.00
## V13            0 212300000 212300000 45.16  2040.64 103474.24
## V14            0         2         2 30.76  1020.73      0.00
## V15            0   2000000   2000000 35.84  1358.56   1095.14
## V16            0         8         8  1.11     5.87      0.02
## V17            0   1000000   1000000  3.03    12.82   2697.12
summary(test)
##    Unique Id      DV (Predict)         V1              V3       
##  Min.   :   1.0   Mode:logical   Min.   :721.0   Min.   :25.00  
##  1st Qu.: 513.8   NA's:2052      1st Qu.:826.8   1st Qu.:34.00  
##  Median :1026.5                  Median :846.0   Median :38.00  
##  Mean   :1026.5                  Mean   :841.0   Mean   :39.54  
##  3rd Qu.:1539.2                  3rd Qu.:865.0   3rd Qu.:45.00  
##  Max.   :2052.0                  Max.   :900.0   Max.   :55.00  
##        V4               V5                 V6               V7          
##  Min.   :0.0000   Min.   :       0   Min.   :0.0000   Min.   :       0  
##  1st Qu.:0.0000   1st Qu.:       0   1st Qu.:0.0000   1st Qu.:       0  
##  Median :0.0000   Median :       0   Median :0.0000   Median :       0  
##  Mean   :0.4751   Mean   : 1370357   Mean   :0.2256   Mean   :  439524  
##  3rd Qu.:1.0000   3rd Qu.: 2109800   3rd Qu.:0.0000   3rd Qu.:       0  
##  Max.   :4.0000   Max.   :41000000   Max.   :5.0000   Max.   :24000000  
##        V8               V9               V10              V11          
##  Min.   :0.0000   Min.   :      0   Min.   :0.0000   Min.   :       0  
##  1st Qu.:0.0000   1st Qu.:      0   1st Qu.:0.0000   1st Qu.:       0  
##  Median :0.0000   Median :      0   Median :0.0000   Median :       0  
##  Mean   :0.1769   Mean   :  66448   Mean   :0.2524   Mean   :  179033  
##  3rd Qu.:0.0000   3rd Qu.:      0   3rd Qu.:0.0000   3rd Qu.:       0  
##  Max.   :4.0000   Max.   :3530000   Max.   :3.0000   Max.   :37000000  
##       V12                V13               V14                V15         
##  Min.   :0.000000   Min.   :      0   Min.   :0.000000   Min.   :      0  
##  1st Qu.:0.000000   1st Qu.:      0   1st Qu.:0.000000   1st Qu.:      0  
##  Median :0.000000   Median :      0   Median :0.000000   Median :      0  
##  Mean   :0.004386   Mean   :   2747   Mean   :0.003899   Mean   :   2203  
##  3rd Qu.:0.000000   3rd Qu.:      0   3rd Qu.:0.000000   3rd Qu.:      0  
##  Max.   :2.000000   Max.   :2320000   Max.   :3.000000   Max.   :1400000  
##       V16              V17         
##  Min.   : 0.000   Min.   :      0  
##  1st Qu.: 1.000   1st Qu.:      0  
##  Median : 1.000   Median :      0  
##  Mean   : 1.418   Mean   :  67231  
##  3rd Qu.: 2.000   3rd Qu.: 100000  
##  Max.   :15.000   Max.   :1133261
describe(test)
##               vars    n       mean         sd median   trimmed    mad min
## Unique Id        1 2052    1026.50     592.51 1026.5   1026.50 760.57   1
## DV (Predict)*    2    0        NaN         NA     NA       NaN     NA Inf
## V1               3 2052     840.97      31.92  846.0    844.83  28.17 721
## V3               4 2052      39.54       7.15   38.0     39.13   7.41  25
## V4               5 2052       0.48       0.68    0.0      0.35   0.00   0
## V5               6 2052 1370356.69 2715181.86    0.0 793330.17   0.00   0
## V6               7 2052       0.23       0.56    0.0      0.09   0.00   0
## V7               8 2052  439523.53 1445951.46    0.0  87952.07   0.00   0
## V8               9 2052       0.18       0.45    0.0      0.06   0.00   0
## V9              10 2052   66448.48  248880.86    0.0   4608.65   0.00   0
## V10             11 2052       0.25       0.53    0.0      0.14   0.00   0
## V11             12 2052  179032.66  930623.12    0.0  54210.06   0.00   0
## V12             13 2052       0.00       0.07    0.0      0.00   0.00   0
## V13             14 2052    2746.78   63933.34    0.0      0.00   0.00   0
## V14             15 2052       0.00       0.10    0.0      0.00   0.00   0
## V15             16 2052    2202.73   50373.76    0.0      0.00   0.00   0
## V16             17 2052       1.42       0.79    1.0      1.41   0.00   0
## V17             18 2052   67231.36  118514.41    0.0  40824.56   0.00   0
##                    max    range  skew kurtosis       se
## Unique Id         2052     2051  0.00    -1.20    13.08
## DV (Predict)*     -Inf     -Inf    NA       NA       NA
## V1                 900      179 -1.18     1.51     0.70
## V3                  55       30  0.42    -0.83     0.16
## V4                   4        4  1.45     2.21     0.02
## V5            41000000 41000000  4.70    39.20 59939.10
## V6                   5        5  3.19    13.70     0.01
## V7            24000000 24000000  7.01    78.28 31920.16
## V8                   4        4  2.91    10.06     0.01
## V9             3530000  3530000  6.50    59.67  5494.18
## V10                  3        3  2.21     4.97     0.01
## V11           37000000 37000000 30.83  1194.32 20544.01
## V12                  2        2 18.53   385.01     0.00
## V13            2320000  2320000 30.15   990.17  1411.36
## V14                  3        3 28.29   835.65     0.00
## V15            1400000  1400000 23.31   554.12  1112.03
## V16                 15       15  3.63    51.30     0.02
## V17            1133261  1133261  3.14    14.30  2616.27

Looking at the dependent variable

We can now study the dependent variable in the training dataset and try to understand some of its properties, so that we can figure out what the data is trying to hint at.

summary(train$DV)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  147000  359000  429000  469718  631000  750000

Generating some plots

The next step into data analysis is to generate some plots and find out relations between the fields. Since we are concerned with the dependent variable and we do know that the rest of the variables are independent, we can compare DV with V1-V17.

hist(train$DV, breaks=10,col="yellow",xlab="DV", main="DV")

plot(train$DV,main="DV")

boxplot(train$DV, horizontal =TRUE, main="Boxplot of DV" ,col="lightblue")

We can now generate some scatterplots to understand how the variables are co-related pair wise.

library(car)
## 
## Attaching package: 'car'
## The following object is masked from 'package:psych':
## 
##     logit
scatterplot(train$DV ~ train$V1,
            spread=FALSE, smoother.args=list(lty=2),
            main="Scatter plot of DV vs V1",
            xlab="DV",
            ylab="V1")

scatterplot(train$DV ~ train$V3,
            spread=FALSE, smoother.args=list(lty=2),
            main="Scatter plot of DV vs V3",
            xlab="DV",
            ylab="V3")

scatterplot(train$DV ~ train$V4,
            spread=FALSE, smoother.args=list(lty=2),
            main="Scatter plot of DV vs V4",
            xlab="DV",
            ylab="V4")

scatterplot(train$DV ~ train$V8,
            spread=FALSE, smoother.args=list(lty=2),
            main="Scatter plot of DV vs V8",
            xlab="DV",
            ylab="V8")

scatterplot(train$DV ~ train$V12,
            spread=FALSE, smoother.args=list(lty=2),
            main="Scatter plot of DV vs V12",
            xlab="DV",
            ylab="V12")

Each graph varies and there does not seem to be a common correlation between the DV and the other independent variables.

We now generate a scatterplot matrix to see the relations with all the fields.

scatterplotMatrix(train, spread=FALSE, smoother.args=list(lty=2), main="Scatter Plot Matrix")

CORRGRAM

The next step is to draw a corrgram and create a variance-covariance matrix for the fields.

library(corrgram)
corr.test(train)
## Call:corr.test(x = train)
## Correlation matrix 
##           Unique Id    DV    V1    V2    V3    V4    V5    V6    V7    V8
## Unique Id      1.00  0.06  0.93 -0.02  0.03  0.06  0.01  0.01  0.00 -0.17
## DV             0.06  1.00  0.04  0.86  0.07  0.40  0.40  0.32  0.25 -0.01
## V1             0.93  0.04  1.00 -0.03  0.01  0.05 -0.01  0.01  0.00 -0.16
## V2            -0.02  0.86 -0.03  1.00  0.10  0.44  0.40  0.35  0.24  0.08
## V3             0.03  0.07  0.01  0.10  1.00  0.01  0.05  0.09  0.08 -0.10
## V4             0.06  0.40  0.05  0.44  0.01  1.00  0.58  0.24  0.12 -0.02
## V5             0.01  0.40 -0.01  0.40  0.05  0.58  1.00  0.31  0.59 -0.04
## V6             0.01  0.32  0.01  0.35  0.09  0.24  0.31  1.00  0.54 -0.03
## V7             0.00  0.25  0.00  0.24  0.08  0.12  0.59  0.54  1.00 -0.03
## V8            -0.17 -0.01 -0.16  0.08 -0.10 -0.02 -0.04 -0.03 -0.03  1.00
## V9            -0.13  0.10 -0.13  0.14 -0.05 -0.05  0.00 -0.02  0.00  0.70
## V10           -0.28  0.11 -0.25  0.19  0.14 -0.02  0.03  0.00  0.03 -0.02
## V11           -0.19  0.17 -0.17  0.21  0.10 -0.03  0.07  0.02  0.12 -0.05
## V12           -0.06 -0.02 -0.08 -0.03  0.05  0.05  0.12  0.05  0.06 -0.01
## V13            0.02 -0.01  0.02 -0.02  0.04 -0.01  0.00 -0.01  0.00 -0.01
## V14           -0.05 -0.02 -0.07 -0.02  0.04  0.01  0.04  0.02  0.00  0.01
## V15           -0.05 -0.01 -0.07 -0.02  0.04  0.01  0.04  0.02  0.00 -0.01
## V16           -0.17 -0.02 -0.18 -0.02 -0.06 -0.05  0.06  0.04  0.05  0.17
## V17           -0.08  0.06 -0.09  0.08  0.08 -0.01  0.09  0.08  0.09  0.02
##              V9   V10   V11   V12   V13   V14   V15   V16   V17
## Unique Id -0.13 -0.28 -0.19 -0.06  0.02 -0.05 -0.05 -0.17 -0.08
## DV         0.10  0.11  0.17 -0.02 -0.01 -0.02 -0.01 -0.02  0.06
## V1        -0.13 -0.25 -0.17 -0.08  0.02 -0.07 -0.07 -0.18 -0.09
## V2         0.14  0.19  0.21 -0.03 -0.02 -0.02 -0.02 -0.02  0.08
## V3        -0.05  0.14  0.10  0.05  0.04  0.04  0.04 -0.06  0.08
## V4        -0.05 -0.02 -0.03  0.05 -0.01  0.01  0.01 -0.05 -0.01
## V5         0.00  0.03  0.07  0.12  0.00  0.04  0.04  0.06  0.09
## V6        -0.02  0.00  0.02  0.05 -0.01  0.02  0.02  0.04  0.08
## V7         0.00  0.03  0.12  0.06  0.00  0.00  0.00  0.05  0.09
## V8         0.70 -0.02 -0.05 -0.01 -0.01  0.01 -0.01  0.17  0.02
## V9         1.00 -0.02 -0.04  0.01  0.00  0.02  0.00  0.13  0.02
## V10       -0.02  1.00  0.74  0.00 -0.01  0.02  0.01 -0.03 -0.02
## V11       -0.04  0.74  1.00  0.01 -0.01  0.03  0.03 -0.01  0.01
## V12        0.01  0.00  0.01  1.00  0.23  0.75  0.82  0.01  0.00
## V13        0.00 -0.01 -0.01  0.23  1.00  0.02  0.02 -0.01 -0.01
## V14        0.02  0.02  0.03  0.75  0.02  1.00  0.95  0.05  0.01
## V15        0.00  0.01  0.03  0.82  0.02  0.95  1.00  0.01  0.01
## V16        0.13 -0.03 -0.01  0.01 -0.01  0.05  0.01  1.00  0.32
## V17        0.02 -0.02  0.01  0.00 -0.01  0.01  0.01  0.32  1.00
## Sample Size 
## [1] 2053
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##           Unique Id   DV   V1   V2   V3   V4   V5   V6   V7   V8   V9  V10
## Unique Id      0.00 0.73 0.00 1.00 1.00 0.45 1.00 1.00 1.00 0.00 0.00 0.00
## DV             0.01 0.00 1.00 0.00 0.18 0.00 0.00 0.00 0.00 1.00 0.00 0.00
## V1             0.00 0.11 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00
## V2             0.35 0.00 0.21 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00
## V3             0.26 0.00 0.73 0.00 0.00 1.00 1.00 0.01 0.07 0.00 1.00 0.00
## V4             0.00 0.00 0.03 0.00 0.53 0.00 0.00 0.00 0.00 1.00 1.00 1.00
## V5             0.55 0.00 0.60 0.00 0.03 0.00 0.00 0.00 0.00 1.00 1.00 1.00
## V6             0.65 0.00 0.69 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00
## V7             0.95 0.00 0.86 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00
## V8             0.00 0.72 0.00 0.00 0.00 0.27 0.11 0.15 0.15 0.00 0.00 1.00
## V9             0.00 0.00 0.00 0.00 0.02 0.04 0.85 0.38 0.94 0.00 0.00 1.00
## V10            0.00 0.00 0.00 0.00 0.00 0.43 0.14 0.91 0.11 0.32 0.33 0.00
## V11            0.00 0.00 0.00 0.00 0.00 0.23 0.00 0.31 0.00 0.02 0.11 0.00
## V12            0.01 0.35 0.00 0.16 0.01 0.03 0.00 0.04 0.01 0.70 0.55 0.90
## V13            0.29 0.81 0.45 0.46 0.05 0.57 0.99 0.78 0.96 0.71 0.87 0.64
## V14            0.01 0.33 0.00 0.26 0.05 0.50 0.04 0.43 0.89 0.82 0.26 0.40
## V15            0.03 0.63 0.00 0.32 0.09 0.64 0.04 0.32 0.94 0.73 1.00 0.68
## V16            0.00 0.27 0.00 0.32 0.01 0.02 0.01 0.06 0.04 0.00 0.00 0.15
## V17            0.00 0.01 0.00 0.00 0.00 0.81 0.00 0.00 0.00 0.29 0.47 0.30
##            V11  V12  V13  V14  V15 V16  V17
## Unique Id 0.00 1.00 1.00 1.00 1.00   0 0.02
## DV        0.00 1.00 1.00 1.00 1.00   1 0.62
## V1        0.00 0.02 1.00 0.08 0.22   0 0.01
## V2        0.00 1.00 1.00 1.00 1.00   1 0.05
## V3        0.00 1.00 1.00 1.00 1.00   1 0.02
## V4        1.00 1.00 1.00 1.00 1.00   1 1.00
## V5        0.10 0.00 1.00 1.00 1.00   1 0.00
## V6        1.00 1.00 1.00 1.00 1.00   1 0.05
## V7        0.00 1.00 1.00 1.00 1.00   1 0.01
## V8        1.00 1.00 1.00 1.00 1.00   0 1.00
## V9        1.00 1.00 1.00 1.00 1.00   0 1.00
## V10       0.00 1.00 1.00 1.00 1.00   1 1.00
## V11       0.00 1.00 1.00 1.00 1.00   1 1.00
## V12       0.61 0.00 0.00 0.00 0.00   1 1.00
## V13       0.75 0.00 0.00 1.00 1.00   1 1.00
## V14       0.13 0.00 0.33 0.00 0.00   1 1.00
## V15       0.20 0.00 0.29 0.00 0.00   1 1.00
## V16       0.64 0.70 0.61 0.02 0.67   0 0.00
## V17       0.63 0.83 0.57 0.63 0.66   0 0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option

We can also understand the correlations in the test dataset as -

library(corrgram)
corr.test(test)
## Call:corr.test(x = test)
## Correlation matrix 
##              Unique Id DV (Predict)    V1    V3    V4    V5    V6    V7
## Unique Id         1.00           NA  0.93  0.05  0.05  0.06 -0.03  0.00
## DV (Predict)        NA           NA    NA    NA    NA    NA    NA    NA
## V1                0.93           NA  1.00  0.04  0.04  0.03 -0.02  0.00
## V3                0.05           NA  0.04  1.00  0.00  0.06  0.10  0.11
## V4                0.05           NA  0.04  0.00  1.00  0.67  0.15  0.12
## V5                0.06           NA  0.03  0.06  0.67  1.00  0.18  0.33
## V6               -0.03           NA -0.02  0.10  0.15  0.18  1.00  0.67
## V7                0.00           NA  0.00  0.11  0.12  0.33  0.67  1.00
## V8               -0.20           NA -0.19 -0.10 -0.02 -0.07 -0.02 -0.04
## V9               -0.16           NA -0.15 -0.05 -0.06 -0.06 -0.02 -0.03
## V10              -0.27           NA -0.24  0.17 -0.01  0.02  0.02  0.03
## V11              -0.13           NA -0.13  0.12 -0.01  0.03  0.01  0.04
## V12              -0.08           NA -0.10  0.06  0.05  0.03  0.02  0.02
## V13              -0.06           NA -0.09  0.05  0.05  0.04  0.05  0.03
## V14              -0.06           NA -0.08  0.05  0.02  0.06  0.06  0.06
## V15              -0.05           NA -0.07  0.06  0.02  0.07  0.04  0.03
## V16              -0.17           NA -0.17 -0.06 -0.06 -0.03  0.04  0.04
## V17              -0.09           NA -0.09  0.07  0.03  0.04  0.12  0.12
##                 V8    V9   V10   V11   V12   V13   V14   V15   V16   V17
## Unique Id    -0.20 -0.16 -0.27 -0.13 -0.08 -0.06 -0.06 -0.05 -0.17 -0.09
## DV (Predict)    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA
## V1           -0.19 -0.15 -0.24 -0.13 -0.10 -0.09 -0.08 -0.07 -0.17 -0.09
## V3           -0.10 -0.05  0.17  0.12  0.06  0.05  0.05  0.06 -0.06  0.07
## V4           -0.02 -0.06 -0.01 -0.01  0.05  0.05  0.02  0.02 -0.06  0.03
## V5           -0.07 -0.06  0.02  0.03  0.03  0.04  0.06  0.07 -0.03  0.04
## V6           -0.02 -0.02  0.02  0.01  0.02  0.05  0.06  0.04  0.04  0.12
## V7           -0.04 -0.03  0.03  0.04  0.02  0.03  0.06  0.03  0.04  0.12
## V8            1.00  0.73 -0.02 -0.03  0.02  0.02  0.03  0.04  0.13  0.00
## V9            0.73  1.00 -0.01 -0.02  0.04  0.06  0.06  0.05  0.13  0.03
## V10          -0.02 -0.01  1.00  0.43  0.01  0.01  0.02  0.02 -0.02  0.02
## V11          -0.03 -0.02  0.43  1.00  0.03  0.05  0.05  0.05  0.01  0.03
## V12           0.02  0.04  0.01  0.03  1.00  0.83  0.40  0.29  0.21  0.07
## V13           0.02  0.06  0.01  0.05  0.83  1.00  0.54  0.39  0.29  0.10
## V14           0.03  0.06  0.02  0.05  0.40  0.54  1.00  0.86  0.25  0.08
## V15           0.04  0.05  0.02  0.05  0.29  0.39  0.86  1.00  0.20  0.05
## V16           0.13  0.13 -0.02  0.01  0.21  0.29  0.25  0.20  1.00  0.29
## V17           0.00  0.03  0.02  0.03  0.07  0.10  0.08  0.05  0.29  1.00
## Sample Size 
##              Unique Id DV (Predict)   V1   V3   V4   V5   V6   V7   V8
## Unique Id         2052            0 2052 2052 2052 2052 2052 2052 2052
## DV (Predict)         0            0    0    0    0    0    0    0    0
## V1                2052            0 2052 2052 2052 2052 2052 2052 2052
## V3                2052            0 2052 2052 2052 2052 2052 2052 2052
## V4                2052            0 2052 2052 2052 2052 2052 2052 2052
## V5                2052            0 2052 2052 2052 2052 2052 2052 2052
## V6                2052            0 2052 2052 2052 2052 2052 2052 2052
## V7                2052            0 2052 2052 2052 2052 2052 2052 2052
## V8                2052            0 2052 2052 2052 2052 2052 2052 2052
## V9                2052            0 2052 2052 2052 2052 2052 2052 2052
## V10               2052            0 2052 2052 2052 2052 2052 2052 2052
## V11               2052            0 2052 2052 2052 2052 2052 2052 2052
## V12               2052            0 2052 2052 2052 2052 2052 2052 2052
## V13               2052            0 2052 2052 2052 2052 2052 2052 2052
## V14               2052            0 2052 2052 2052 2052 2052 2052 2052
## V15               2052            0 2052 2052 2052 2052 2052 2052 2052
## V16               2052            0 2052 2052 2052 2052 2052 2052 2052
## V17               2052            0 2052 2052 2052 2052 2052 2052 2052
##                V9  V10  V11  V12  V13  V14  V15  V16  V17
## Unique Id    2052 2052 2052 2052 2052 2052 2052 2052 2052
## DV (Predict)    0    0    0    0    0    0    0    0    0
## V1           2052 2052 2052 2052 2052 2052 2052 2052 2052
## V3           2052 2052 2052 2052 2052 2052 2052 2052 2052
## V4           2052 2052 2052 2052 2052 2052 2052 2052 2052
## V5           2052 2052 2052 2052 2052 2052 2052 2052 2052
## V6           2052 2052 2052 2052 2052 2052 2052 2052 2052
## V7           2052 2052 2052 2052 2052 2052 2052 2052 2052
## V8           2052 2052 2052 2052 2052 2052 2052 2052 2052
## V9           2052 2052 2052 2052 2052 2052 2052 2052 2052
## V10          2052 2052 2052 2052 2052 2052 2052 2052 2052
## V11          2052 2052 2052 2052 2052 2052 2052 2052 2052
## V12          2052 2052 2052 2052 2052 2052 2052 2052 2052
## V13          2052 2052 2052 2052 2052 2052 2052 2052 2052
## V14          2052 2052 2052 2052 2052 2052 2052 2052 2052
## V15          2052 2052 2052 2052 2052 2052 2052 2052 2052
## V16          2052 2052 2052 2052 2052 2052 2052 2052 2052
## V17          2052 2052 2052 2052 2052 2052 2052 2052 2052
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##              Unique Id DV (Predict)   V1   V3   V4   V5   V6   V7   V8
## Unique Id         0.00           NA 0.00 1.00 1.00 0.71 1.00 1.00 0.00
## DV (Predict)        NA           NA   NA   NA   NA   NA   NA   NA   NA
## V1                0.00           NA 0.00 1.00 1.00 1.00 1.00 1.00 0.00
## V3                0.03           NA 0.08 0.00 1.00 0.46 0.00 0.00 0.00
## V4                0.02           NA 0.11 0.85 0.00 0.00 0.00 0.00 1.00
## V5                0.01           NA 0.19 0.01 0.00 0.00 0.00 0.00 0.19
## V6                0.13           NA 0.30 0.00 0.00 0.00 0.00 0.00 1.00
## V7                0.87           NA 0.84 0.00 0.00 0.00 0.00 0.00 1.00
## V8                0.00           NA 0.00 0.00 0.41 0.00 0.49 0.07 0.00
## V9                0.00           NA 0.00 0.02 0.00 0.01 0.40 0.17 0.00
## V10               0.00           NA 0.00 0.00 0.62 0.40 0.26 0.20 0.48
## V11               0.00           NA 0.00 0.00 0.71 0.12 0.64 0.04 0.20
## V12               0.00           NA 0.00 0.01 0.04 0.12 0.29 0.42 0.35
## V13               0.00           NA 0.00 0.02 0.03 0.04 0.04 0.12 0.28
## V14               0.01           NA 0.00 0.03 0.30 0.01 0.00 0.01 0.20
## V15               0.03           NA 0.00 0.01 0.48 0.00 0.08 0.12 0.10
## V16               0.00           NA 0.00 0.01 0.00 0.20 0.04 0.04 0.00
## V17               0.00           NA 0.00 0.00 0.25 0.09 0.00 0.00 0.99
##                V9  V10  V11  V12  V13  V14  V15  V16  V17
## Unique Id    0.00 0.00 0.00 0.02 0.33 0.88 1.00 0.00 0.00
## DV (Predict)   NA   NA   NA   NA   NA   NA   NA   NA   NA
## V1           0.00 0.00 0.00 0.00 0.00 0.02 0.12 0.00 0.00
## V3           1.00 0.00 0.00 0.88 1.00 1.00 0.46 0.82 0.16
## V4           0.36 1.00 1.00 1.00 1.00 1.00 1.00 0.38 1.00
## V5           0.60 1.00 1.00 1.00 1.00 0.63 0.07 1.00 1.00
## V6           1.00 1.00 1.00 1.00 1.00 0.32 1.00 1.00 0.00
## V7           1.00 1.00 1.00 1.00 1.00 0.78 1.00 1.00 0.00
## V8           0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00
## V9           0.00 1.00 1.00 1.00 0.49 0.82 1.00 0.00 1.00
## V10          0.58 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00
## V11          0.46 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00
## V12          0.05 0.68 0.14 0.00 0.00 0.00 0.00 0.00 0.12
## V13          0.01 0.52 0.04 0.00 0.00 0.00 0.00 0.00 0.00
## V14          0.01 0.40 0.02 0.00 0.00 0.00 0.00 0.00 0.02
## V15          0.02 0.42 0.02 0.00 0.00 0.00 0.00 0.00 1.00
## V16          0.00 0.42 0.60 0.00 0.00 0.00 0.00 0.00 0.00
## V17          0.18 0.30 0.25 0.00 0.00 0.00 0.01 0.00 0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option

These tables enable us to understand relations between the independent variables. We learn that the DV is most related to V2,V4 and V5 since their correlation values are closer to 1.

We get covariance and correlation matrices as -

cov(train)
##               Unique Id            DV            V1            V2
## Unique Id  3.514052e+05  6.472275e+06  1.763963e+04 -5.681287e+00
## DV         6.472275e+06  3.346512e+10  2.088964e+05  7.371832e+04
## V1         1.763963e+04  2.088964e+05  1.022854e+03 -4.124521e-01
## V2        -5.681287e+00  7.371832e+04 -4.124521e-01  2.187570e-01
## V3         1.076584e+02  9.201232e+04  1.794134e+00  3.216840e-01
## V4         2.605702e+01  5.045819e+04  1.077191e+00  1.441921e-01
## V5         2.757361e+07  2.585957e+11 -1.292177e+06  6.618975e+05
## V6         3.337232e+00  3.319311e+04  1.585710e-01  9.236851e-02
## V7         2.222797e+06  1.151925e+11 -3.205386e+05  2.894204e+05
## V8        -4.515400e+01 -6.714571e+02 -2.268938e+00  1.719397e-02
## V9        -2.026710e+07  4.857575e+09 -1.034748e+06  1.714262e+04
## V10       -8.510526e+01  1.066135e+04 -4.205231e+00  4.693507e-02
## V11       -5.458995e+07  1.563356e+10 -2.625821e+06  4.923242e+04
## V12       -3.662768e+00 -4.065203e+02 -2.916777e-01 -1.573792e-03
## V13        6.534539e+07 -4.647083e+09  2.516990e+06 -3.552126e+04
## V14       -1.753899e+00 -2.143625e+02 -1.290492e-01 -6.295166e-04
## V15       -1.423158e+06 -9.668920e+07 -1.083262e+05 -5.099085e+02
## V16       -7.560478e+01 -3.260895e+03 -4.317105e+00 -7.539957e-03
## V17       -6.049021e+06  1.363014e+09 -3.448846e+05  4.428722e+03
##                      V3            V4            V5            V6
## Unique Id  1.076584e+02  2.605702e+01  2.757361e+07  3.337232e+00
## DV         9.201232e+04  5.045819e+04  2.585957e+11  3.319311e+04
## V1         1.794134e+00  1.077191e+00 -1.292177e+06  1.585710e-01
## V2         3.216840e-01  1.441921e-01  6.618975e+05  9.236851e-02
## V3         5.235675e+01  7.008120e-02  1.190633e+06  3.660276e-01
## V4         7.008120e-02  4.836615e-01  1.412743e+06  9.636827e-02
## V5         1.190633e+06  1.412743e+06  1.222901e+13  6.235679e+05
## V6         3.660276e-01  9.636827e-02  6.235679e+05  3.225432e-01
## V7         1.398882e+06  2.191456e+05  5.274069e+12  7.847619e+05
## V8        -3.398882e-01 -7.809614e-03 -5.642916e+04 -8.191787e-03
## V9        -9.356942e+04 -8.078660e+03 -3.701840e+09 -2.824685e+03
## V10        5.089761e-01 -6.279025e-03  5.926935e+04 -6.947946e-04
## V11        3.648463e+05 -9.073104e+03  1.271841e+11  6.275012e+03
## V12        4.207127e-02  3.590524e-03  4.446460e+04  2.785350e-03
## V13        1.447895e+06 -4.088552e+04 -5.240323e+09 -1.666737e+04
## V14        1.692597e-02  5.590165e-04  8.490380e+03  5.293447e-04
## V15        1.343226e+04  3.602108e+02  7.757763e+09  6.139544e+02
## V16       -3.002239e-01 -2.612091e-02  1.435316e+05  1.715623e-02
## V17        7.301795e+04 -4.573465e+02  3.889300e+10  5.425693e+03
##                      V7            V8            V9           V10
## Unique Id  2.222797e+06 -4.515400e+01 -2.026710e+07 -8.510526e+01
## DV         1.151925e+11 -6.714571e+02  4.857575e+09  1.066135e+04
## V1        -3.205386e+05 -2.268938e+00 -1.034748e+06 -4.205231e+00
## V2         2.894204e+05  1.719397e-02  1.714262e+04  4.693507e-02
## V3         1.398882e+06 -3.398882e-01 -9.356942e+04  5.089761e-01
## V4         2.191456e+05 -7.809614e-03 -8.078660e+03 -6.279025e-03
## V5         5.274069e+12 -5.642916e+04 -3.701840e+09  5.926935e+04
## V6         7.847619e+05 -8.191787e-03 -2.824685e+03 -6.947946e-04
## V7         6.495685e+12 -3.670033e+04  1.013347e+09  4.621684e+04
## V8        -3.670033e+04  2.093879e-01  8.276904e+04 -5.195174e-03
## V9         1.013347e+09  8.276904e+04  6.608353e+10 -2.881800e+03
## V10        4.621684e+04 -5.195174e-03 -2.881800e+03  2.686360e-01
## V11        1.468057e+11 -1.138294e+04 -4.483072e+09  1.890370e+05
## V12        1.574218e+04 -4.146929e-04  3.699266e+02 -1.623640e-04
## V13        1.294859e+10 -1.792245e+04 -4.408879e+09 -2.500528e+04
## V14       -4.185294e+02  1.265205e-04  3.448517e+02  5.198497e-04
## V15       -2.001199e+08 -1.752962e+02  1.552109e+06  2.358931e+02
## V16        8.642927e+04  5.621095e-02  2.473710e+04 -1.189957e-02
## V17        2.701557e+10  1.296750e+03  5.027954e+08 -1.451386e+03
##                     V11           V12           V13           V14
## Unique Id -5.458995e+07 -3.662768e+00  6.534539e+07 -1.753899e+00
## DV         1.563356e+10 -4.065203e+02 -4.647083e+09 -2.143625e+02
## V1        -2.625821e+06 -2.916777e-01  2.516990e+06 -1.290492e-01
## V2         4.923242e+04 -1.573792e-03 -3.552126e+04 -6.295166e-04
## V3         3.648463e+05  4.207127e-02  1.447895e+06  1.692597e-02
## V4        -9.073104e+03  3.590524e-03 -4.088552e+04  5.590165e-04
## V5         1.271841e+11  4.446460e+04 -5.240323e+09  8.490380e+03
## V6         6.275012e+03  2.785350e-03 -1.666737e+04  5.293447e-04
## V7         1.468057e+11  1.574218e+04  1.294859e+10 -4.185294e+02
## V8        -1.138294e+04 -4.146929e-04 -1.792245e+04  1.265205e-04
## V9        -4.483072e+09  3.699266e+02 -4.408879e+09  3.448517e+02
## V10        1.890370e+05 -1.623640e-04 -2.500528e+04  5.198497e-04
## V11        2.449235e+11  5.986787e+02 -1.642084e+10  8.902278e+02
## V12        5.986787e+02  1.167217e-02  1.183141e+05  4.376470e-03
## V13       -1.642084e+10  1.183141e+05  2.198130e+13  5.424095e+03
## V14        8.902278e+02  4.376470e-03  5.424095e+03  2.920179e-03
## V15        6.896405e+08  4.378274e+03  5.464813e+09  2.550530e+03
## V16       -3.771619e+03  6.712945e-04 -3.844163e+04  2.022904e-03
## V17        6.365358e+08 -6.274256e+01 -7.219161e+09  7.041954e+01
##                     V15           V16           V17
## Unique Id -1.423158e+06 -7.560478e+01 -6.049021e+06
## DV        -9.668920e+07 -3.260895e+03  1.363014e+09
## V1        -1.083262e+05 -4.317105e+00 -3.448846e+05
## V2        -5.099085e+02 -7.539957e-03  4.428722e+03
## V3         1.343226e+04 -3.002239e-01  7.301795e+04
## V4         3.602108e+02 -2.612091e-02 -4.573465e+02
## V5         7.757763e+09  1.435316e+05  3.889300e+10
## V6         6.139544e+02  1.715623e-02  5.425693e+03
## V7        -2.001199e+08  8.642927e+04  2.701557e+10
## V8        -1.752962e+02  5.621095e-02  1.296750e+03
## V9         1.552109e+06  2.473710e+04  5.027954e+08
## V10        2.358931e+02 -1.189957e-02 -1.451386e+03
## V11        6.896405e+08 -3.771619e+03  6.365358e+08
## V12        4.378274e+03  6.712945e-04 -6.274256e+01
## V13        5.464813e+09 -3.844163e+04 -7.219161e+09
## V14        2.550530e+03  2.022904e-03  7.041954e+01
## V15        2.462225e+09  3.422558e+02  5.981761e+07
## V16        3.422558e+02  5.342712e-01  2.825275e+04
## V17        5.981761e+07  2.825275e+04  1.493446e+10
cor(train)
##              Unique Id           DV           V1          V2           V3
## Unique Id  1.000000000  0.059683834  0.930418713 -0.02049093  0.025099060
## DV         0.059683834  1.000000000  0.035704897  0.86158513  0.069512588
## V1         0.930418713  0.035704897  1.000000000 -0.02757310  0.007752856
## V2        -0.020490927  0.861585127 -0.027573099  1.00000000  0.095052176
## V3         0.025099060  0.069512588  0.007752856  0.09505218  1.000000000
## V4         0.063204771  0.396610953  0.048430064  0.44329169  0.013926579
## V5         0.013301295  0.404230925 -0.011553659  0.40468222  0.047053939
## V6         0.009912617  0.319490409  0.008730174  0.34773544  0.089070430
## V7         0.001471239  0.247067521 -0.003932429  0.24279272  0.075854675
## V8        -0.166462480 -0.008021329 -0.155038638  0.08033770 -0.102653555
## V9        -0.132996695  0.103294376 -0.125858038  0.14257704 -0.050303827
## V10       -0.276993914  0.112443379 -0.253688548  0.19361292  0.135715335
## V11       -0.186077299  0.172681742 -0.165898714  0.21269384  0.101884557
## V12       -0.057191246 -0.020568864 -0.084415176 -0.03114515  0.053817501
## V13        0.023511708 -0.005418231  0.016786026 -0.01619872  0.042679966
## V14       -0.054751461 -0.021684427 -0.074669605 -0.02490700  0.043287515
## V15       -0.048382143 -0.010651674 -0.068259426 -0.02197087  0.037410965
## V16       -0.174487490 -0.024387079 -0.184673607 -0.02205500 -0.056764664
## V17       -0.083499958  0.060969039 -0.088241339  0.07748232  0.082575001
##                     V4            V5           V6           V7
## Unique Id  0.063204771  0.0133012953  0.009912617  0.001471239
## DV         0.396610953  0.4042309247  0.319490409  0.247067521
## V1         0.048430064 -0.0115536593  0.008730174 -0.003932429
## V2         0.443291688  0.4046822188  0.347735441  0.242792723
## V3         0.013926579  0.0470539387  0.089070430  0.075854675
## V4         1.000000000  0.5808940252  0.243988471  0.123637302
## V5         0.580894025  1.0000000000  0.313974363  0.591749219
## V6         0.243988471  0.3139743628  1.000000000  0.542164999
## V7         0.123637302  0.5917492190  0.542164999  1.000000000
## V8        -0.024540481 -0.0352640514 -0.031521648 -0.031468910
## V9        -0.045187880 -0.0041178966 -0.019347707  0.001546675
## V10       -0.017419646  0.0327003532 -0.002360371  0.034986917
## V11       -0.026361485  0.0734889668  0.022325712  0.116389837
## V12        0.047787162  0.1176909344  0.045395209  0.057171093
## V13       -0.012539265 -0.0003196213 -0.006259597  0.001083635
## V14        0.014874731  0.0449290046  0.017248045 -0.003038847
## V15        0.010438113  0.0447071511  0.021786036 -0.001582392
## V16       -0.051385027  0.0561527425  0.041328244  0.046394606
## V17       -0.005381209  0.0910083179  0.078174754  0.086737501
##                     V8            V9          V10         V11          V12
## Unique Id -0.166462480 -0.1329966954 -0.276993914 -0.18607730 -0.057191246
## DV        -0.008021329  0.1032943760  0.112443379  0.17268174 -0.020568864
## V1        -0.155038638 -0.1258580382 -0.253688548 -0.16589871 -0.084415176
## V2         0.080337700  0.1425770351  0.193612923  0.21269384 -0.031145150
## V3        -0.102653555 -0.0503038267  0.135715335  0.10188456  0.053817501
## V4        -0.024540481 -0.0451878802 -0.017419646 -0.02636149  0.047787162
## V5        -0.035264051 -0.0041178966  0.032700353  0.07348897  0.117690934
## V6        -0.031521648 -0.0193477073 -0.002360371  0.02232571  0.045395209
## V7        -0.031468910  0.0015466749  0.034986917  0.11638984  0.057171093
## V8         1.000000000  0.7036319198 -0.021904947 -0.05026474 -0.008388321
## V9         0.703631920  1.0000000000 -0.021628936 -0.03523821  0.013319659
## V10       -0.021904947 -0.0216289360  1.000000000  0.73696949 -0.002899559
## V11       -0.050264738 -0.0352382148  0.736969492  1.00000000  0.011197029
## V12       -0.008388321  0.0133196591 -0.002899559  0.01119703  1.000000000
## V13       -0.008354007 -0.0036580940 -0.010290178 -0.00707707  0.233579176
## V14        0.005116588  0.0248245318  0.018560556  0.03328750  0.749623957
## V15       -0.007720275  0.0001216779  0.009172108  0.02808301  0.816701288
## V16        0.168059967  0.1316501535 -0.031410035 -0.01042634  0.008500735
## V17        0.023189198  0.0160047878 -0.022914269  0.01052477 -0.004752167
##                     V13          V14           V15          V16
## Unique Id  0.0235117081 -0.054751461 -0.0483821433 -0.174487490
## DV        -0.0054182313 -0.021684427 -0.0106516736 -0.024387079
## V1         0.0167860257 -0.074669605 -0.0682594260 -0.184673607
## V2        -0.0161987185 -0.024907004 -0.0219708728 -0.022054997
## V3         0.0426799659  0.043287515  0.0374109645 -0.056764664
## V4        -0.0125392647  0.014874731  0.0104381128 -0.051385027
## V5        -0.0003196213  0.044929005  0.0447071511  0.056152743
## V6        -0.0062595971  0.017248045  0.0217860359  0.041328244
## V7         0.0010836354 -0.003038847 -0.0015823916  0.046394606
## V8        -0.0083540070  0.005116588 -0.0077202749  0.168059967
## V9        -0.0036580940  0.024824532  0.0001216779  0.131650153
## V10       -0.0102901777  0.018560556  0.0091721083 -0.031410035
## V11       -0.0070770698  0.033287503  0.0280830057 -0.010426336
## V12        0.2335791763  0.749623957  0.8167012881  0.008500735
## V13        1.0000000000  0.021408975  0.0234900910 -0.011217451
## V14        0.0214089747  1.000000000  0.9511779932  0.051214113
## V15        0.0234900910  0.951177993  1.0000000000  0.009436392
## V16       -0.0112174506  0.051214113  0.0094363924  1.000000000
## V17       -0.0125998460  0.010663352  0.0098643932  0.316289773
##                    V17
## Unique Id -0.083499958
## DV         0.060969039
## V1        -0.088241339
## V2         0.077482320
## V3         0.082575001
## V4        -0.005381209
## V5         0.091008318
## V6         0.078174754
## V7         0.086737501
## V8         0.023189198
## V9         0.016004788
## V10       -0.022914269
## V11        0.010524775
## V12       -0.004752167
## V13       -0.012599846
## V14        0.010663352
## V15        0.009864393
## V16        0.316289773
## V17        1.000000000
library(corrplot)
## corrplot 0.84 loaded
corrplot(cor(train),method = 'color')

corrgram(train, order=TRUE, lower.panel=panel.shade,
         upper.panel=panel.pie, text.panel=panel.txt,
         main="Loan Data")

Running some simple tests - chisquare etc

We can test the accuracy of our understanding of the correlations between the DV and other fields using the chisquare and t-tests etc.

chisq.test(xtabs(~DV + V1, data = train))
## 
##  Pearson's Chi-squared test
## 
## data:  xtabs(~DV + V1, data = train)
## X-squared = 80419, df = 74800, p-value < 2.2e-16
chisq.test(xtabs(~DV + V2, data = train))
## 
##  Pearson's Chi-squared test
## 
## data:  xtabs(~DV + V2, data = train)
## X-squared = 2053, df = 440, p-value < 2.2e-16
chisq.test(xtabs(~DV + V3, data = train))
## 
##  Pearson's Chi-squared test
## 
## data:  xtabs(~DV + V3, data = train)
## X-squared = 12833, df = 13200, p-value = 0.9886
chisq.test(xtabs(~DV + V4, data = train))
## 
##  Pearson's Chi-squared test
## 
## data:  xtabs(~DV + V4, data = train)
## X-squared = 3309.6, df = 2640, p-value < 2.2e-16
chisq.test(xtabs(~DV + V5, data = train))
## 
##  Pearson's Chi-squared test
## 
## data:  xtabs(~DV + V5, data = train)
## X-squared = 301820, df = 231000, p-value < 2.2e-16
chisq.test(xtabs(~DV + V6, data = train))
## 
##  Pearson's Chi-squared test
## 
## data:  xtabs(~DV + V6, data = train)
## X-squared = 1364.9, df = 2200, p-value = 1
chisq.test(xtabs(~DV + V7, data = train))
## 
##  Pearson's Chi-squared test
## 
## data:  xtabs(~DV + V7, data = train)
## X-squared = 122040, df = 113080, p-value < 2.2e-16
chisq.test(xtabs(~DV + V8, data = train))
## 
##  Pearson's Chi-squared test
## 
## data:  xtabs(~DV + V8, data = train)
## X-squared = 2232.3, df = 1760, p-value = 9.667e-14
chisq.test(xtabs(~DV + V9, data = train))
## 
##  Pearson's Chi-squared test
## 
## data:  xtabs(~DV + V9, data = train)
## X-squared = 93726, df = 59400, p-value < 2.2e-16
chisq.test(xtabs(~DV + V10, data = train))
## 
##  Pearson's Chi-squared test
## 
## data:  xtabs(~DV + V10, data = train)
## X-squared = 2105.5, df = 1320, p-value < 2.2e-16
chisq.test(xtabs(~DV + V11, data = train))
## 
##  Pearson's Chi-squared test
## 
## data:  xtabs(~DV + V11, data = train)
## X-squared = 169050, df = 106920, p-value < 2.2e-16
chisq.test(xtabs(~DV + V12, data = train))
## 
##  Pearson's Chi-squared test
## 
## data:  xtabs(~DV + V12, data = train)
## X-squared = 1288.7, df = 1320, p-value = 0.726
chisq.test(xtabs(~DV + V13, data = train))
## 
##  Pearson's Chi-squared test
## 
## data:  xtabs(~DV + V13, data = train)
## X-squared = 2061, df = 2640, p-value = 1
chisq.test(xtabs(~DV + V14, data = train))
## 
##  Pearson's Chi-squared test
## 
## data:  xtabs(~DV + V14, data = train)
## X-squared = 344.38, df = 880, p-value = 1
chisq.test(xtabs(~DV + V15, data = train))
## 
##  Pearson's Chi-squared test
## 
## data:  xtabs(~DV + V15, data = train)
## X-squared = 688.18, df = 1320, p-value = 1
chisq.test(xtabs(~DV + V16, data = train))
## 
##  Pearson's Chi-squared test
## 
## data:  xtabs(~DV + V16, data = train)
## X-squared = 2714.6, df = 3080, p-value = 1

We next run t-tests -

attach(train)
t.test(DV,V1, data = train)
## 
##  Welch Two Sample t-test
## 
## data:  DV and V1
## t = 116.13, df = 2052, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  460959.2 476794.8
## sample estimates:
##   mean of x   mean of y 
## 469717.9737    840.9523
t.test(DV,V2, data = train)
## 
##  Welch Two Sample t-test
## 
## data:  DV and V2
## t = 116.34, df = 2052, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  461799.8 477635.5
## sample estimates:
##   mean of x   mean of y 
## 4.69718e+05 3.22942e-01
t.test(DV,V3, data = train)
## 
##  Welch Two Sample t-test
## 
## data:  DV and V3
## t = 116.33, df = 2052, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  461760.6 477596.2
## sample estimates:
##    mean of x    mean of y 
## 469717.97370     39.56698
t.test(DV,V4, data = train)
## 
##  Welch Two Sample t-test
## 
## data:  DV and V4
## t = 116.34, df = 2052, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  461799.7 477635.3
## sample estimates:
##    mean of x    mean of y 
## 4.697180e+05 4.632245e-01
t.test(DV,V5, data = train)
## 
##  Welch Two Sample t-test
## 
## data:  DV and V5
## t = -12.709, df = 2063.2, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -1133781.8  -830652.8
## sample estimates:
## mean of x mean of y 
##    469718   1451935
t.test(DV,V6, data = train)
## 
##  Welch Two Sample t-test
## 
## data:  DV and V6
## t = 116.34, df = 2052, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  461799.9 477635.6
## sample estimates:
##    mean of x    mean of y 
## 4.697180e+05 2.284462e-01
t.test(DV,V7, data = train)
## 
##  Welch Two Sample t-test
## 
## data:  DV and V7
## t = -2.1277, df = 2073.1, p-value = 0.03348
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -230582.633   -9392.596
## sample estimates:
## mean of x mean of y 
##  469718.0  589705.6
t.test(DV,V8, data = train)
## 
##  Welch Two Sample t-test
## 
## data:  DV and V8
## t = 116.34, df = 2052, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  461800.0 477635.6
## sample estimates:
##   mean of x   mean of y 
## 4.69718e+05 1.85095e-01
t.test(DV,V9, data = train)
## 
##  Welch Two Sample t-test
## 
## data:  DV and V9
## t = 56.959, df = 3706.1, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  382974.4 410279.4
## sample estimates:
## mean of x mean of y 
## 469717.97  73091.07
t.test(DV,V10, data = train)
## 
##  Welch Two Sample t-test
## 
## data:  DV and V10
## t = 116.34, df = 2052, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  461799.9 477635.6
## sample estimates:
##    mean of x    mean of y 
## 4.697180e+05 2.333171e-01
t.test(DV,V11, data = train)
## 
##  Welch Two Sample t-test
## 
## data:  DV and V11
## t = 26.859, df = 2602.5, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  289937.9 335605.8
## sample estimates:
## mean of x mean of y 
##  469718.0  156946.1
t.test(DV,V12, data = train)
## 
##  Welch Two Sample t-test
## 
## data:  DV and V12
## t = 116.34, df = 2052, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  461800.1 477635.8
## sample estimates:
##    mean of x    mean of y 
## 4.697180e+05 4.870921e-03
t.test(DV,V13, data = train)
## 
##  Welch Two Sample t-test
## 
## data:  DV and V13
## t = 3.4743, df = 2058.2, p-value = 0.0005227
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  156699.3 562858.4
## sample estimates:
## mean of x mean of y 
##  469718.0  109939.1
t.test(DV,V14, data = train)
## 
##  Welch Two Sample t-test
## 
## data:  DV and V14
## t = 116.34, df = 2052, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  461800.1 477635.8
## sample estimates:
##    mean of x    mean of y 
## 4.697180e+05 1.948368e-03
t.test(DV,V15, data = train)
## 
##  Welch Two Sample t-test
## 
## data:  DV and V15
## t = 111.91, df = 2352.3, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  459936.5 476343.1
## sample estimates:
##  mean of x  mean of y 
## 469717.974   1578.178
t.test(DV,V16, data = train)
## 
##  Welch Two Sample t-test
## 
## data:  DV and V16
## t = 116.34, df = 2052, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  461798.7 477634.3
## sample estimates:
##   mean of x   mean of y 
## 4.69718e+05 1.46225e+00
t.test(DV,V17, data = train)
## 
##  Welch Two Sample t-test
## 
## data:  DV and V17
## t = 82.041, df = 3579.3, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  388823.5 407862.9
## sample estimates:
## mean of x mean of y 
## 469717.97  71374.77

From the t-tests and chi-square tests, using the p-value < 0.05, we can reject the null hypothesis and say that the DV is affected by the factors - V1 to V17 directly.

Running the Regression model

After understanding relations in the data, we can now move on to creating our model to predict values of DV from V1-V17.

Since we know that these are numerical values, and with our analysis are able to get some understanding of the relations between the data, we will first run a model that depends on all the variables.

fit1 <- lm(DV ~ ., data=train)
summary(fit1)
## 
## Call:
## lm(formula = DV ~ ., data = train)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -236432  -60184   40563   62004  201166 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  7.576e+05  1.354e+05   5.597 2.48e-08 ***
## `Unique Id`  4.253e+01  9.216e+00   4.615 4.18e-06 ***
## V1          -4.973e+02  1.697e+02  -2.930  0.00343 ** 
## V2           3.306e+05  5.301e+03  62.375  < 2e-16 ***
## V3          -4.636e+02  2.812e+02  -1.649  0.09931 .  
## V4          -6.332e+03  4.053e+03  -1.562  0.11841    
## V5           3.882e-03  9.465e-04   4.102 4.27e-05 ***
## V6           3.772e+03  4.463e+03   0.845  0.39812    
## V7          -6.835e-04  1.207e-03  -0.566  0.57141    
## V8          -4.671e+04  6.178e+03  -7.561 6.00e-14 ***
## V9           5.172e-02  1.103e-02   4.689 2.93e-06 ***
## V10         -2.605e+04  5.852e+03  -4.451 9.00e-06 ***
## V11          1.930e-02  6.020e-03   3.206  0.00137 ** 
## V12         -6.216e+04  3.536e+04  -1.758  0.07892 .  
## V13          5.332e-04  4.557e-04   1.170  0.24210    
## V14         -3.241e+05  1.220e+05  -2.656  0.00797 ** 
## V15          4.610e-01  1.554e-01   2.967  0.00304 ** 
## V16          2.914e+03  2.978e+03   0.978  0.32801    
## V17         -1.609e-02  1.729e-02  -0.930  0.35235    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 89320 on 2034 degrees of freedom
## Multiple R-squared:  0.7637, Adjusted R-squared:  0.7616 
## F-statistic: 365.2 on 18 and 2034 DF,  p-value: < 2.2e-16
fitted(fit1)
##        1        2        3        4        5        6        7        8 
## 685802.7 358782.3 375729.7 380011.6 678108.4 700177.8 460724.1 704025.9 
##        9       10       11       12       13       14       15       16 
## 385487.5 681313.6 381829.8 304291.6 723401.1 385667.8 385773.6 685896.8 
##       17       18       19       20       21       22       23       24 
## 706433.1 364824.2 376905.0 375556.6 377730.1 356328.8 281559.1 341273.6 
##       25       26       27       28       29       30       31       32 
## 375933.0 374555.7 378132.7 519673.7 666864.5 379583.8 703084.4 699361.5 
##       33       34       35       36       37       38       39       40 
## 375692.3 703809.6 706779.8 362415.4 678652.6 356333.0 675217.0 765335.9 
##       41       42       43       44       45       46       47       48 
## 693308.9 324949.5 665351.4 707452.8 642105.0 321334.7 371201.8 688911.8 
##       49       50       51       52       53       54       55       56 
## 711540.1 350939.0 357529.9 350212.9 356425.4 705543.9 374373.7 312868.1 
##       57       58       59       60       61       62       63       64 
## 737299.8 371623.7 339779.0 368354.3 336681.9 707220.4 671790.6 360701.7 
##       65       66       67       68       69       70       71       72 
## 372316.5 699559.3 364596.3 367024.9 305191.5 665953.7 850005.1 726672.3 
##       73       74       75       76       77       78       79       80 
## 348707.4 366715.7 737451.1 368707.9 369442.2 671493.1 356350.4 350188.5 
##       81       82       83       84       85       86       87       88 
## 419964.6 698253.4 356450.1 716569.1 310511.1 354899.0 367459.2 660954.4 
##       89       90       91       92       93       94       95       96 
## 351073.6 345947.1 339868.9 342142.2 688879.8 327928.4 314879.4 366703.2 
##       97       98       99      100      101      102      103      104 
## 355291.4 314183.8 364704.2 367528.5 362606.7 695831.0 363511.1 366772.7 
##      105      106      107      108      109      110      111      112 
## 671160.9 667896.0 343385.5 324018.1 355248.7 296889.2 697334.1 359364.2 
##      113      114      115      116      117      118      119      120 
## 650657.5 347178.3 355015.0 362719.4 362558.1 690583.9 327544.8 338235.7 
##      121      122      123      124      125      126      127      128 
## 230711.8 363822.7 360085.0 684973.2 344957.5 354352.2 310516.7 364342.9 
##      129      130      131      132      133      134      135      136 
## 643908.1 360014.0 348944.9 674525.4 672802.3 152000.0 367223.2 362664.3 
##      137      138      139      140      141      142      143      144 
## 362398.2 351997.4 359881.5 685246.0 338192.0 356588.4 667560.1 342120.7 
##      145      146      147      148      149      150      151      152 
## 321590.6 314781.6 691944.2 697847.8 328768.4 253826.1 296305.8 665337.3 
##      153      154      155      156      157      158      159      160 
## 342081.4 357209.7 355643.5 672344.6 732707.1 320975.3 347945.0 693217.7 
##      161      162      163      164      165      166      167      168 
## 680722.0 335075.8 659897.4 697644.3 351748.9 361444.5 358950.5 359311.5 
##      169      170      171      172      173      174      175      176 
## 324647.4 578371.5 674043.5 283212.6 353988.4 351591.3 349404.8 674585.0 
##      177      178      179      180      181      182      183      184 
## 313209.6 342013.4 335343.2 344801.4 672328.8 671641.6 323514.0 413137.9 
##      185      186      187      188      189      190      191      192 
## 359798.7 684059.8 687831.6 340610.6 357403.2 650004.0 663898.1 669565.3 
##      193      194      195      196      197      198      199      200 
## 349219.6 313233.0 358683.9 354351.6 691593.8 729582.0 352661.1 355761.1 
##      201      202      203      204      205      206      207      208 
## 669148.6 694467.4 327849.2 284716.0 356929.8 667969.7 723030.6 336474.6 
##      209      210      211      212      213      214      215      216 
## 328091.9 354120.8 357975.9 356392.0 356434.5 633563.1 300869.5 357408.2 
##      217      218      219      220      221      222      223      224 
## 350089.3 320074.9 312810.9 349516.3 357241.7 355856.3 359602.0 666645.4 
##      225      226      227      228      229      230      231      232 
## 358729.5 358546.8 339087.6 346341.5 355113.7 355235.6 352869.1 628222.2 
##      233      234      235      236      237      238      239      240 
## 691480.9 361281.5 331580.7 347454.3 359579.5 679201.9 665046.2 681607.2 
##      241      242      243      244      245      246      247      248 
## 685990.8 699607.0 339208.9 318023.7 343562.0 344889.0 672244.5 697035.6 
##      249      250      251      252      253      254      255      256 
## 669272.4 345232.9 341040.4 361473.6 312055.0 346613.8 364421.4 663424.2 
##      257      258      259      260      261      262      263      264 
## 677164.3 648168.6 668927.3 655963.7 319124.4 352394.5 355117.8 328899.9 
##      265      266      267      268      269      270      271      272 
## 354271.1 326967.4 329492.0 353603.4 355832.1 334761.5 678883.1 687996.2 
##      273      274      275      276      277      278      279      280 
## 688312.0 324245.5 337096.9 323389.9 331992.8 351171.9 350792.1 339394.9 
##      281      282      283      284      285      286      287      288 
## 697094.9 674816.3 662936.0 351496.5 323752.0 336626.6 352815.4 357339.2 
##      289      290      291      292      293      294      295      296 
## 357357.2 334444.8 698571.9 264493.9 356928.4 330337.3 689239.9 685284.7 
##      297      298      299      300      301      302      303      304 
## 691283.8 715839.2 676201.9 347619.2 344974.2 355750.9 356679.7 355331.3 
##      305      306      307      308      309      310      311      312 
## 355373.8 356012.0 347312.4 690739.8 670816.0 679361.9 691836.5 689912.7 
##      313      314      315      316      317      318      319      320 
## 339012.1 340145.5 348631.1 356558.1 314821.8 334550.1 358849.3 354587.1 
##      321      322      323      324      325      326      327      328 
## 354166.0 351426.8 351137.6 355684.5 355263.4 358522.5 333388.3 680141.3 
##      329      330      331      332      333      334      335      336 
## 601398.0 657784.9 336509.8 335881.7 350601.9 666639.7 643774.7 661350.7 
##      337      338      339      340      341      342      343      344 
## 645587.5 352503.5 315930.4 333949.3 346825.1 637780.5 698335.8 689188.2 
##      345      346      347      348      349      350      351      352 
## 638450.4 695884.3 655346.2 697611.9 329841.0 307427.8 335223.2 339168.0 
##      353      354      355      356      357      358      359      360 
## 359730.5 336883.0 673582.8 672683.0 681432.3 702585.9 354167.8 306405.1 
##      361      362      363      364      365      366      367      368 
## 356381.3 297906.0 326702.6 355987.3 353505.7 356735.2 335881.9 350002.8 
##      369      370      371      372      373      374      375      376 
## 342606.2 326713.3 316099.6 350172.9 662322.6 334755.0 316477.2 330620.3 
##      377      378      379      380      381      382      383      384 
## 330305.8 333297.8 355822.2 336213.6 342606.6 298537.8 684752.8 795799.2 
##      385      386      387      388      389      390      391      392 
## 664645.4 324764.1 338538.7 349798.3 339194.2 351289.2 296458.6 317307.4 
##      393      394      395      396      397      398      399      400 
## 702067.3 644704.8 324027.6 339669.1 336984.9 354629.4 351889.6 356826.2 
##      401      402      403      404      405      406      407      408 
## 358380.0 299929.3 682420.4 631928.8 692538.4 353338.6 323649.5 319975.5 
##      409      410      411      412      413      414      415      416 
## 327446.3 353640.7 351233.1 669611.5 689593.4 329936.6 337878.1 347224.8 
##      417      418      419      420      421      422      423      424 
## 308884.3 359291.0 358162.5 357562.2 295513.8 355508.2 326314.7 630866.5 
##      425      426      427      428      429      430      431      432 
## 771195.0 807646.3 329764.5 358047.9 343618.6 350549.8 346452.7 314332.3 
##      433      434      435      436      437      438      439      440 
## 351088.1 350752.9 354276.7 359315.4 354769.9 680546.1 715457.7 348878.6 
##      441      442      443      444      445      446      447      448 
## 355927.1 321203.9 291067.4 319866.7 334440.0 292511.9 355969.9 670266.9 
##      449      450      451      452      453      454      455      456 
## 672636.3 698219.1 673135.6 656377.8 334557.8 357136.7 328587.2 341109.5 
##      457      458      459      460      461      462      463      464 
## 314234.7 354779.7 357628.6 345433.2 358978.8 360559.0 352418.3 688549.7 
##      465      466      467      468      469      470      471      472 
## 678986.3 672020.0 681547.6 722246.1 684210.4 705318.0 669092.3 320023.8 
##      473      474      475      476      477      478      479      480 
## 337357.8 289912.6 314208.3 358638.2 660485.4 737980.9 686822.2 327162.5 
##      481      482      483      484      485      486      487      488 
## 356682.2 348905.0 297690.7 329040.1 332543.6 352767.2 347655.7 356025.9 
##      489      490      491      492      493      494      495      496 
## 335401.1 339481.2 324091.4 338688.8 701115.1 686555.0 689697.3 690123.9 
##      497      498      499      500      501      502      503      504 
## 665712.7 341595.6 356524.4 333326.7 297007.3 353245.3 355837.0 362147.4 
##      505      506      507      508      509      510      511      512 
## 326190.4 357848.7 362630.0 352340.6 353215.4 657992.4 678029.9 684927.9 
##      513      514      515      516      517      518      519      520 
## 698959.3 679967.0 330827.1 358122.0 342485.3 318453.7 335065.4 339528.9 
##      521      522      523      524      525      526      527      528 
## 357573.0 353810.9 354075.4 332087.3 333425.4 677472.4 660068.3 657151.1 
##      529      530      531      532      533      534      535      536 
## 692520.6 670975.8 337736.2 340628.8 320950.9 332346.0 354465.1 334890.3 
##      537      538      539      540      541      542      543      544 
## 341578.1 358352.5 356837.0 353302.4 357892.1 360341.9 644157.0 681072.6 
##      545      546      547      548      549      550      551      552 
## 663903.4 613086.1 678549.8 694853.2 701815.4 693358.8 315702.2 333373.5 
##      553      554      555      556      557      558      559      560 
## 354030.2 355422.7 353311.0 358759.5 354897.0 356795.6 670195.9 681271.3 
##      561      562      563      564      565      566      567      568 
## 683748.1 665069.1 685153.5 349932.0 354753.1 338596.7 334590.3 310416.4 
##      569      570      571      572      573      574      575      576 
## 353455.3 354374.3 352103.2 350291.2 351483.3 303826.9 353796.2 356952.2 
##      577      578      579      580      581      582      583      584 
## 361390.1 356021.7 352236.0 687304.2 677150.2 689991.4 652623.6 715403.2 
##      585      586      587      588      589      590      591      592 
## 660958.7 696202.2 352881.9 323421.8 334190.4 351023.0 351585.1 357704.3 
##      593      594      595      596      597      598      599      600 
## 352079.8 328218.8 359495.1 333354.8 302948.6 666981.3 669802.1 688915.1 
##      601      602      603      604      605      606      607      608 
## 671099.6 692633.8 685405.5 357201.3 348351.6 332138.0 353220.6 356391.1 
##      609      610      611      612      613      614      615      616 
## 355897.1 358462.7 316146.8 300806.4 358499.3 355683.1 354834.3 358679.8 
##      617      618      619      620      621      622      623      624 
## 361091.7 357828.5 359431.9 351801.5 356016.7 358841.0 356101.7 361839.8 
##      625      626      627      628      629      630      631      632 
## 335131.0 342784.3 688080.8 539942.0 690360.9 689554.5 677182.0 681254.3 
##      633      634      635      636      637      638      639      640 
## 687880.3 670449.3 696125.8 685002.0 689355.5 352076.5 346732.9 331218.4 
##      641      642      643      644      645      646      647      648 
## 339228.8 343566.4 348352.7 355988.4 348194.6 353853.7 330400.2 352958.5 
##      649      650      651      652      653      654      655      656 
## 330361.6 344257.9 355536.2 356472.5 353458.2 363081.9 356038.0 350980.5 
##      657      658      659      660      661      662      663      664 
## 365527.7 355667.5 691234.9 678873.3 665331.7 686045.1 689109.6 696857.4 
##      665      666      667      668      669      670      671      672 
## 648344.0 809271.1 770454.7 350945.6 343519.3 314055.8 355162.0 341479.6 
##      673      674      675      676      677      678      679      680 
## 357498.5 356910.7 363664.9 356176.7 358330.8 358373.3 355662.3 349185.7 
##      681      682      683      684      685      686      687      688 
## 344962.6 354370.7 359513.2 358628.5 361930.1 683051.1 692571.4 690291.6 
##      689      690      691      692      693      694      695      696 
## 686703.7 706302.9 701162.6 645205.3 337175.7 357743.2 356876.4 356455.3 
##      697      698      699      700      701      702      703      704 
## 337360.4 321811.8 363073.7 362641.0 357463.2 361367.0 353160.9 359577.3 
##      705      706      707      708      709      710      711      712 
## 362865.2 361848.5 357749.1 358265.9 360092.7 362544.1 312953.5 699759.6 
##      713      714      715      716      717      718      719      720 
## 635192.8 669641.5 689499.4 681469.8 746680.9 703859.6 674200.2 329407.0 
##      721      722      723      724      725      726      727      728 
## 318412.0 346628.6 333185.2 352380.4 310848.7 356694.1 348691.6 352287.9 
##      729      730      731      732      733      734      735      736 
## 345240.9 337818.5 360096.2 359675.1 339770.9 362078.3 351297.9 361699.7 
##      737      738      739      740      741      742      743      744 
## 359509.0 366089.5 337855.7 695718.6 652081.3 665096.4 664894.6 662228.8 
##      745      746      747      748      749      750      751      752 
## 665692.1 696452.1 704279.1 689222.4 703308.7 700875.0 648599.4 676366.5 
##      753      754      755      756      757      758      759      760 
## 682250.0 685384.3 354128.6 333627.2 338118.9 354505.3 337147.2 353150.5 
##      761      762      763      764      765      766      767      768 
## 352111.0 325391.6 304157.0 336026.5 361220.6 352864.8 350910.9 350448.4 
##      769      770      771      772      773      774      775      776 
## 349902.0 362430.4 361114.6 365647.1 364448.0 360714.4 306558.2 310517.1 
##      777      778      779      780      781      782      783      784 
## 696345.3 698808.0 724486.2 705323.8 691443.5 699092.5 305459.4 328637.5 
##      785      786      787      788      789      790      791      792 
## 359961.6 340052.7 354447.8 329191.9 363664.3 364060.8 365494.2 364145.8 
##      793      794      795      796      797      798      799      800 
## 358406.9 362244.4 360896.0 362793.0 362556.3 360475.6 317675.1 367018.0 
##      801      802      803      804      805      806      807      808 
## 662455.1 691266.2 685128.6 703216.4 718313.8 693413.7 669392.7 715640.6 
##      809      810      811      812      813      814      815      816 
## 698333.5 656749.5 357623.5 371227.3 343517.5 343106.7 353149.4 332059.9 
##      817      818      819      820      821      822      823      824 
## 322136.8 367072.3 363273.8 365302.9 366711.5 358301.4 361924.7 362186.3 
##      825      826      827      828      829      830      831      832 
## 364421.5 362644.2 362681.3 365047.5 353035.5 365728.1 360207.0 357571.7 
##      833      834      835      836      837      838      839      840 
## 363073.9 366693.9 364776.6 358896.8 364417.0 365132.3 362733.5 364630.5 
##      841      842      843      844      845      846      847      848 
## 362169.5 365642.8 362903.6 367242.0 363587.8 362633.3 684098.5 687193.9 
##      849      850      851      852      853      854      855      856 
## 680081.5 685642.2 691678.8 296601.9 351312.5 353251.4 362784.7 323824.1 
##      857      858      859      860      861      862      863      864 
## 295647.6 362495.6 362849.8 364520.1 354362.7 363214.2 356093.5 366676.7 
##      865      866      867      868      869      870      871      872 
## 356423.9 334447.9 318881.0 688531.4 661779.7 641372.0 670664.5 666882.4 
##      873      874      875      876      877      878      879      880 
## 701493.8 675439.8 675153.6 691081.4 706142.2 662818.8 698975.7 700699.1 
##      881      882      883      884      885      886      887      888 
## 363831.5 352904.2 364491.5 353363.0 367781.0 363737.6 365889.5 349736.5 
##      889      890      891      892      893      894      895      896 
## 673601.0 701205.3 754114.3 686682.0 690727.8 831140.8 791622.7 686430.3 
##      897      898      899      900      901      902      903      904 
## 671083.0 366838.9 355084.2 364339.1 321852.2 343250.8 364381.4 367296.9 
##      905      906      907      908      909      910      911      912 
## 321438.2 340217.4 294333.3 369729.3 344562.4 369029.2 372453.9 367524.1 
##      913      914      915      916      917      918      919      920 
## 357401.9 330539.3 676314.5 649662.9 678539.8 784608.8 343923.9 300678.0 
##      921      922      923      924      925      926      927      928 
## 347143.6 360564.8 360505.4 340671.4 325029.9 362864.5 318660.2 369311.0 
##      929      930      931      932      933      934      935      936 
## 367753.0 364150.4 366974.8 366090.0 364410.0 358425.3 365852.4 359769.3 
##      937      938      939      940      941      942      943      944 
## 366302.7 364954.3 366387.7 359348.6 370313.8 347385.9 336242.8 366049.6 
##      945      946      947      948      949      950      951      952 
## 630570.4 700180.1 683217.6 706592.8 701635.7 725038.7 728596.1 692310.1 
##      953      954      955      956      957      958      959      960 
## 673563.1 691259.2 653929.2 357931.6 366431.5 351975.7 361977.8 366915.4 
##      961      962      963      964      965      966      967      968 
## 337296.6 367403.5 363797.6 297236.9 366806.3 348935.9 339899.9 363878.2 
##      969      970      971      972      973      974      975      976 
## 360398.5 364890.5 368310.5 367448.8 367220.8 367170.0 364771.5 364218.4 
##      977      978      979      980      981      982      983      984 
## 357770.1 357349.0 368518.7 364852.2 360239.7 361646.6 361039.6 367316.0 
##      985      986      987      988      989      990      991      992 
## 359273.0 700721.6 683694.1 694447.0 688566.2 688167.9 722692.9 694742.7 
##      993      994      995      996      997      998      999     1000 
## 709033.2 344712.6 366383.6 344579.4 331989.3 368526.6 306749.8 345376.7 
##     1001     1002     1003     1004     1005     1006     1007     1008 
## 355153.8 369504.1 312502.4 362307.4 357256.9 367637.2 345525.6 371862.1 
##     1009     1010     1011     1012     1013     1014     1015     1016 
## 699672.9 684040.9 657827.5 701760.9 700129.1 655347.2 713126.9 699640.8 
##     1017     1018     1019     1020     1021     1022     1023     1024 
## 673822.0 365216.9 351319.2 361849.5 350880.6 355186.2 373767.3 359724.6 
##     1025     1026     1027     1028     1029     1030     1031     1032 
## 365585.4 364768.4 363736.1 374346.7 374157.9 366454.1 368808.2 363787.7 
##     1033     1034     1035     1036     1037     1038     1039     1040 
## 358549.2 700770.5 693586.7 692347.1 708380.1 681954.9 704088.9 706108.7 
##     1041     1042     1043     1044     1045     1046     1047     1048 
## 691144.6 725692.1 688470.9 706186.7 709832.5 744041.3 356332.5 364190.2 
##     1049     1050     1051     1052     1053     1054     1055     1056 
## 367808.3 367089.7 358497.8 366545.0 339532.0 356117.9 366591.5 358710.4 
##     1057     1058     1059     1060     1061     1062     1063     1064 
## 368232.2 365428.2 371488.1 373848.8 368908.0 686599.9 665139.8 705664.5 
##     1065     1066     1067     1068     1069     1070     1071     1072 
## 714581.9 696049.7 713612.2 702942.3 662531.9 369935.7 363155.7 358610.8 
##     1073     1074     1075     1076     1077     1078     1079     1080 
## 328160.0 364076.8 369281.1 374869.4 370904.1 284834.3 691801.9 696480.8 
##     1081     1082     1083     1084     1085     1086     1087     1088 
## 680881.4 741141.0 722471.9 686332.5 699519.4 703599.5 695407.6 362126.5 
##     1089     1090     1091     1092     1093     1094     1095     1096 
## 340170.1 289697.4 325815.3 347154.9 326161.4 369566.7 367984.5 363049.6 
##     1097     1098     1099     1100     1101     1102     1103     1104 
## 370270.0 368533.3 353062.7 351097.4 684909.7 684358.0 705025.6 661429.6 
##     1105     1106     1107     1108     1109     1110     1111     1112 
## 685591.0 648441.0 682247.9 697935.1 368745.1 368160.9 323521.6 370479.3 
##     1113     1114     1115     1116     1117     1118     1119     1120 
## 368219.1 326967.1 369707.7 376795.7 375217.5 364292.9 371952.1 376201.5 
##     1121     1122     1123     1124     1125     1126     1127     1128 
## 708625.5 709098.3 707628.9 703193.4 704590.9 658866.8 703377.8 695429.1 
##     1129     1130     1131     1132     1133     1134     1135     1136 
## 703692.2 695660.9 333535.1 357984.7 372903.1 346508.9 361339.6 344720.8 
##     1137     1138     1139     1140     1141     1142     1143     1144 
## 302831.7 370214.7 367337.3 363538.8 368935.8 372831.7 704973.0 685292.3 
##     1145     1146     1147     1148     1149     1150     1151     1152 
## 678008.2 703721.3 710172.7 663073.4 703619.8 696976.2 761263.2 691912.9 
##     1153     1154     1155     1156     1157     1158     1159     1160 
## 677974.0 711852.5 362752.1 338510.6 372007.9 349874.4 364761.4 330929.3 
##     1161     1162     1163     1164     1165     1166     1167     1168 
## 347457.4 374689.5 367174.1 347066.0 365608.5 369842.8 375247.1 700986.9 
##     1169     1170     1171     1172     1173     1174     1175     1176 
## 695947.9 654448.1 700964.1 707077.9 675371.0 757575.6 728316.2 708674.1 
##     1177     1178     1179     1180     1181     1182     1183     1184 
## 705941.3 329064.4 343917.2 373508.8 373829.6 367722.1 373427.1 320662.7 
##     1185     1186     1187     1188     1189     1190     1191     1192 
## 364178.6 372824.3 367240.3 368490.1 689127.9 671378.0 712200.0 729318.2 
##     1193     1194     1195     1196     1197     1198     1199     1200 
## 716008.4 650127.7 727281.8 297819.9 316169.4 360137.3 338281.8 371553.0 
##     1201     1202     1203     1204     1205     1206     1207     1208 
## 362786.4 321774.9 311023.3 367597.3 368922.9 319419.6 371010.1 366476.2 
##     1209     1210     1211     1212     1213     1214     1215     1216 
## 324223.3 376282.9 370298.2 366631.6 322040.2 373008.7 373415.4 374452.6 
##     1217     1218     1219     1220     1221     1222     1223     1224 
## 348454.9 708598.1 646351.1 676409.9 689372.3 671517.3 904639.4 701364.6 
##     1225     1226     1227     1228     1229     1230     1231     1232 
## 707225.6 309668.3 365699.4 360674.8 375979.3 362123.9 370410.1 377126.7 
##     1233     1234     1235     1236     1237     1238     1239     1240 
## 664428.0 690296.4 701449.6 699249.9 688070.0 680664.3 710989.9 664495.4 
##     1241     1242     1243     1244     1245     1246     1247     1248 
## 703243.3 706305.9 373793.6 353713.2 344629.0 356167.3 365822.8 368689.2 
##     1249     1250     1251     1252     1253     1254     1255     1256 
## 368570.9 337329.7 375640.9 370049.3 374052.3 368924.9 374646.9 363696.2 
##     1257     1258     1259     1260     1261     1262     1263     1264 
## 694709.0 695896.4 709782.6 714000.5 712082.0 696747.9 719100.6 704364.7 
##     1265     1266     1267     1268     1269     1270     1271     1272 
## 773136.6 674543.9 646710.3 749414.9 736763.8 704221.7 690242.4 368874.2 
##     1273     1274     1275     1276     1277     1278     1279     1280 
## 371996.4 372975.3 377551.4 369488.9 376021.8 337038.9 374479.8 351333.5 
##     1281     1282     1283     1284     1285     1286     1287     1288 
## 367100.0 370344.1 338317.0 694864.5 698880.3 713141.5 704377.7 689137.8 
##     1289     1290     1291     1292     1293     1294     1295     1296 
## 655665.2 805151.8 703293.6 709759.0 670137.5 698971.9 709976.9 367411.7 
##     1297     1298     1299     1300     1301     1302     1303     1304 
## 371370.6 369976.8 371339.7 375538.1 285446.1 373898.5 375021.4 371898.3 
##     1305     1306     1307     1308     1309     1310     1311     1312 
## 377813.0 377571.8 345996.0 704855.3 713705.9 712912.9 709476.9 711849.7 
##     1313     1314     1315     1316     1317     1318     1319     1320 
## 708294.7 700907.9 366722.1 352730.2 354410.3 374044.4 370857.4 367901.0 
##     1321     1322     1323     1324     1325     1326     1327     1328 
## 367219.9 331938.7 365419.6 365258.8 375435.1 354501.8 377540.5 374973.4 
##     1329     1330     1331     1332     1333     1334     1335     1336 
## 370379.6 379826.7 374637.3 368566.7 372536.2 370592.2 372548.1 372656.5 
##     1337     1338     1339     1340     1341     1342     1343     1344 
## 376747.0 363771.3 375441.2 371774.6 373208.0 373693.2 366892.3 709816.2 
##     1345     1346     1347     1348     1349     1350     1351     1352 
## 709486.7 713725.6 697660.0 708883.5 701156.2 715321.9 700331.6 726553.8 
##     1353     1354     1355     1356     1357     1358     1359     1360 
## 728455.5 787996.4 725117.6 367576.2 367563.7 327999.6 339146.0 380182.6 
##     1361     1362     1363     1364     1365     1366     1367     1368 
## 374453.6 378794.8 376541.1 375543.4 377094.9 371312.5 374794.2 370945.2 
##     1369     1370     1371     1372     1373     1374     1375     1376 
## 372737.3 368569.5 350730.2 630099.9 672621.1 745351.4 710880.9 724144.6 
##     1377     1378     1379     1380     1381     1382     1383     1384 
## 718328.8 759227.7 698140.7 376745.3 374086.3 251838.7 367331.2 371007.4 
##     1385     1386     1387     1388     1389     1390     1391     1392 
## 350412.8 379995.1 368606.0 370175.6 376876.1 383284.0 337771.1 381361.0 
##     1393     1394     1395     1396     1397     1398     1399     1400 
## 377875.6 352116.7 380669.0 379320.7 362851.0 367824.8 371102.8 371113.2 
##     1401     1402     1403     1404     1405     1406     1407     1408 
## 374301.4 373491.6 370809.3 376879.1 375398.7 374182.3 376067.4 376726.7 
##     1409     1410     1411     1412     1413     1414     1415     1416 
## 381022.2 372462.9 371975.8 705809.3 708008.1 699434.5 650623.5 719267.1 
##     1417     1418     1419     1420     1421     1422     1423     1424 
## 718476.3 734830.9 720151.2 754217.5 701354.5 709599.5 723352.6 718325.8 
##     1425     1426     1427     1428     1429     1430     1431     1432 
## 712524.5 366154.3 340224.9 355106.9 356654.2 371983.4 347862.8 371336.7 
##     1433     1434     1435     1436     1437     1438     1439     1440 
## 376791.6 373669.2 376266.9 372974.3 372798.4 370152.1 373565.5 376389.8 
##     1441     1442     1443     1444     1445     1446     1447     1448 
## 369098.9 362933.0 707864.8 672310.5 691544.2 666739.5 709442.6 733330.6 
##     1449     1450     1451     1452     1453     1454     1455     1456 
## 691671.7 706576.2 379045.9 374531.5 360043.7 353370.2 379114.3 377737.7 
##     1457     1458     1459     1460     1461     1462     1463     1464 
## 380486.1 380367.0 371136.9 373497.6 381033.2 382523.7 369452.5 375058.6 
##     1465     1466     1467     1468     1469     1470     1471     1472 
## 370148.2 371689.4 377040.7 379865.0 377873.2 380852.9 379197.3 379571.5 
##     1473     1474     1475     1476     1477     1478     1479     1480 
## 378016.4 380871.1 346795.5 705454.4 705007.9 707428.6 705496.6 708866.9 
##     1481     1482     1483     1484     1485     1486     1487     1488 
## 683243.2 683351.0 706975.8 732971.8 725564.9 670606.4 357229.7 355195.1 
##     1489     1490     1491     1492     1493     1494     1495     1496 
## 369144.0 377000.1 352932.3 359989.4 382922.0 382889.4 383155.1 377832.3 
##     1497     1498     1499     1500     1501     1502     1503     1504 
## 369103.8 380238.6 371070.1 688818.7 706061.6 714208.0 697605.8 713924.9 
##     1505     1506     1507     1508     1509     1510     1511     1512 
## 719453.8 711425.2 714120.5 713024.8 705670.1 306260.3 374689.8 314085.9 
##     1513     1514     1515     1516     1517     1518     1519     1520 
## 345519.1 368062.7 334473.3 383886.9 379278.2 383910.5 377793.8 377844.1 
##     1521     1522     1523     1524     1525     1526     1527     1528 
## 378806.1 381885.3 379818.5 377674.8 382135.8 380508.1 374093.3 372881.0 
##     1529     1530     1531     1532     1533     1534     1535     1536 
## 379647.0 374479.4 378767.8 373246.7 384548.4 380943.3 384169.8 378980.4 
##     1537     1538     1539     1540     1541     1542     1543     1544 
## 377754.9 379529.1 379614.4 378160.8 376973.7 377942.7 380669.0 383625.3 
##     1545     1546     1547     1548     1549     1550     1551     1552 
## 382144.9 384564.5 383289.2 386845.9 717014.7 698412.0 817998.9 719479.2 
##     1553     1554     1555     1556     1557     1558     1559     1560 
## 666896.5 714232.5 682594.4 376309.3 382827.9 376173.2 380209.1 349819.5 
##     1561     1562     1563     1564     1565     1566     1567     1568 
## 385756.7 376417.3 374819.9 378385.9 376693.2 380686.1 378410.5 366358.5 
##     1569     1570     1571     1572     1573     1574     1575     1576 
## 378229.1 379465.3 372089.7 373986.8 371834.0 378708.2 382591.7 371838.7 
##     1577     1578     1579     1580     1581     1582     1583     1584 
## 379422.3 378414.6 383093.5 385816.7 389238.8 383953.6 387381.5 362529.7 
##     1585     1586     1587     1588     1589     1590     1591     1592 
## 383232.6 386890.0 676173.0 718573.2 722339.0 716871.7 723874.3 719013.0 
##     1593     1594     1595     1596     1597     1598     1599     1600 
## 740333.5 728589.3 749468.7 624716.9 720448.2 714446.3 705599.6 719209.1 
##     1601     1602     1603     1604     1605     1606     1607     1608 
## 704799.1 725771.1 377125.9 333750.4 380393.0 372605.9 385938.7 381698.9 
##     1609     1610     1611     1612     1613     1614     1615     1616 
## 377527.4 378611.7 388664.3 718605.0 686287.5 736617.4 673646.5 329712.0 
##     1617     1618     1619     1620     1621     1622     1623     1624 
## 378019.4 380272.4 376605.2 378653.8 379388.0 379435.7 381110.6 377843.0 
##     1625     1626     1627     1628     1629     1630     1631     1632 
## 382364.9 379965.9 386717.7 374446.4 370184.2 384006.9 383420.3 386884.8 
##     1633     1634     1635     1636     1637     1638     1639     1640 
## 717547.1 668076.6 717900.2 714535.0 721213.4 673304.0 709991.5 721322.2 
##     1641     1642     1643     1644     1645     1646     1647     1648 
## 712122.9 666232.8 727582.3 732547.8 733999.2 718408.3 725641.3 718993.6 
##     1649     1650     1651     1652     1653     1654     1655     1656 
## 720300.6 720776.4 725548.4 718756.4 715405.0 380076.1 380398.0 383426.3 
##     1657     1658     1659     1660     1661     1662     1663     1664 
## 382136.8 383261.0 388915.1 384118.9 381041.8 383276.7 384782.2 385545.4 
##     1665     1666     1667     1668     1669     1670     1671     1672 
## 378407.2 385102.5 387710.7 382571.0 381719.8 384080.5 381061.9 373418.7 
##     1673     1674     1675     1676     1677     1678     1679     1680 
## 378416.4 383455.4 387252.3 378772.1 377707.5 370813.3 379424.7 376624.0 
##     1681     1682     1683     1684     1685     1686     1687     1688 
## 379694.1 385054.5 388010.8 381998.0 386744.1 387211.1 386194.4 375170.1 
##     1689     1690     1691     1692     1693     1694     1695     1696 
## 382570.4 385858.3 384037.8 383161.6 386449.5 386955.7 651822.7 688040.6 
##     1697     1698     1699     1700     1701     1702     1703     1704 
## 753678.9 733040.0 381078.5 360485.8 383330.8 338299.9 383000.2 377339.2 
##     1705     1706     1707     1708     1709     1710     1711     1712 
## 381947.1 384852.6 379961.8 377317.5 380549.0 389248.6 386144.7 384574.0 
##     1713     1714     1715     1716     1717     1718     1719     1720 
## 377643.1 383731.8 385175.1 381962.3 427353.2 381583.8 387653.5 382927.7 
##     1721     1722     1723     1724     1725     1726     1727     1728 
## 379204.2 380694.6 386713.8 379852.4 384067.6 382851.2 376240.8 386049.7 
##     1729     1730     1731     1732     1733     1734     1735     1736 
## 381587.9 387600.7 379222.8 385888.2 378380.6 379492.3 379988.5 385462.7 
##     1737     1738     1739     1740     1741     1742     1743     1744 
## 385167.7 384198.2 382977.0 384206.5 708439.1 710341.7 707637.2 712407.7 
##     1745     1746     1747     1748     1749     1750     1751     1752 
## 686643.9 711006.9 715822.2 721528.1 731778.4 729549.6 710255.3 727362.7 
##     1753     1754     1755     1756     1757     1758     1759     1760 
## 719565.8 380078.5 381881.9 384142.2 381356.9 381672.2 388400.6 389041.6 
##     1761     1762     1763     1764     1765     1766     1767     1768 
## 385135.0 380317.7 385261.3 385531.6 374378.3 384386.6 379310.2 384961.7 
##     1769     1770     1771     1772     1773     1774     1775     1776 
## 389888.0 384850.7 383065.4 385569.0 390682.6 387972.3 386528.9 384811.9 
##     1777     1778     1779     1780     1781     1782     1783     1784 
## 395030.2 389043.4 723993.4 725719.6 722526.2 725313.3 711178.8 714908.9 
##     1785     1786     1787     1788     1789     1790     1791     1792 
## 720893.7 706827.3 738051.6 680681.3 736213.3 387228.2 387770.5 386849.5 
##     1793     1794     1795     1796     1797     1798     1799     1800 
## 391611.1 390080.9 376449.7 383442.5 373622.7 379686.5 388074.5 674613.8 
##     1801     1802     1803     1804     1805     1806     1807     1808 
## 726358.6 722643.9 725263.8 378517.1 328906.1 386546.9 385088.8 388887.2 
##     1809     1810     1811     1812     1813     1814     1815     1816 
## 384293.4 387249.7 379742.1 387374.2 390102.0 388686.4 384886.9 721205.1 
##     1817     1818     1819     1820     1821     1822     1823     1824 
## 673488.6 659518.1 721183.1 714571.7 727407.8 346451.5 382839.5 385425.3 
##     1825     1826     1827     1828     1829     1830     1831     1832 
## 381917.8 381273.5 382025.5 382285.9 383807.7 387840.0 716605.9 724110.9 
##     1833     1834     1835     1836     1837     1838     1839     1840 
## 730979.0 774228.9 730455.5 386301.5 382880.7 377034.4 382317.8 391235.3 
##     1841     1842     1843     1844     1845     1846     1847     1848 
## 389418.8 391193.0 387956.5 390350.7 385756.9 389972.2 386409.5 385966.1 
##     1849     1850     1851     1852     1853     1854     1855     1856 
## 382491.6 382300.4 382766.7 385775.3 388093.6 389848.7 383507.7 386224.7 
##     1857     1858     1859     1860     1861     1862     1863     1864 
## 390903.6 390482.5 392047.9 389500.6 384582.8 392024.8 389304.2 388201.6 
##     1865     1866     1867     1868     1869     1870     1871     1872 
## 389852.9 714114.4 731127.7 725876.5 723317.0 685544.5 729529.8 380752.2 
##     1873     1874     1875     1876     1877     1878     1879     1880 
## 381452.0 389755.3 378476.2 383273.4 388011.4 386161.3 381650.9 390125.4 
##     1881     1882     1883     1884     1885     1886     1887     1888 
## 382901.6 381733.1 381969.1 382413.8 380595.3 388526.1 388436.6 716259.6 
##     1889     1890     1891     1892     1893     1894     1895     1896 
## 718690.9 708538.7 707035.7 390880.5 379973.4 724555.9 711050.6 681722.7 
##     1897     1898     1899     1900     1901     1902     1903     1904 
## 728191.0 704913.7 389432.4 362140.8 383866.6 388973.5 382827.0 390671.7 
##     1905     1906     1907     1908     1909     1910     1911     1912 
## 389101.1 388580.5 391040.6 389228.6 387906.6 387742.9 387127.4 379822.1 
##     1913     1914     1915     1916     1917     1918     1919     1920 
## 375943.3 391338.3 391512.8 384005.2 389279.7 389653.9 384974.2 390666.2 
##     1921     1922     1923     1924     1925     1926     1927     1928 
## 389913.4 389644.1 389866.5 388367.5 388206.7 387992.2 392845.1 385609.7 
##     1929     1930     1931     1932     1933     1934     1935     1936 
## 387803.5 388773.3 390892.7 392699.4 720149.0 674422.0 722005.0 731499.0 
##     1937     1938     1939     1940     1941     1942     1943     1944 
## 722960.2 388375.2 357260.9 388137.2 392591.9 385410.8 389202.9 384235.0 
##     1945     1946     1947     1948     1949     1950     1951     1952 
## 392754.9 389266.5 393909.1 390432.4 379224.4 389984.0 387472.5 386893.4 
##     1953     1954     1955     1956     1957     1958     1959     1960 
## 385397.7 383940.8 380974.7 383354.4 384324.2 385889.6 384409.3 391137.4 
##     1961     1962     1963     1964     1965     1966     1967     1968 
## 386017.2 383146.0 389319.6 388794.6 389764.4 383316.1 385738.2 386182.9 
##     1969     1970     1971     1972     1973     1974     1975     1976 
## 390398.1 389513.4 388165.0 381716.7 386215.7 382729.0 392507.8 404627.7 
##     1977     1978     1979     1980     1981     1982     1983     1984 
## 388401.2 393231.0 394664.4 391329.6 391749.8 391414.6 390292.3 383617.9 
##     1985     1986     1987     1988     1989     1990     1991     1992 
## 386417.4 716751.6 741618.8 721520.0 755354.2 692330.2 726780.3 392972.1 
##     1993     1994     1995     1996     1997     1998     1999     2000 
## 386723.0 388491.4 393593.5 396549.0 726975.5 731126.3 728666.2 768594.0 
##     2001     2002     2003     2004     2005     2006     2007     2008 
## 733131.6 397395.3 384663.2 385424.1 395095.4 378020.7 389470.7 391656.4 
##     2009     2010     2011     2012     2013     2014     2015     2016 
## 386432.4 388790.7 727464.1 724994.4 724212.4 726468.0 753984.2 726109.9 
##     2017     2018     2019     2020     2021     2022     2023     2024 
## 725915.1 731467.8 723045.5 733436.8 728045.2 745758.6 730826.0 725513.6 
##     2025     2026     2027     2028     2029     2030     2031     2032 
## 748326.9 380810.0 385442.0 347149.6 382449.5 720748.4 723119.9 722739.9 
##     2033     2034     2035     2036     2037     2038     2039     2040 
## 742549.1 384557.9 383260.8 394800.9 741341.4 376741.7 395428.5 339646.6 
##     2041     2042     2043     2044     2045     2046     2047     2048 
## 676037.3 688013.3 393587.1 385074.0 390491.4 721817.4 690050.9 691010.9 
##     2049     2050     2051     2052     2053 
## 385138.4 376153.0 376780.1 384445.2 715728.9
residuals(fit1)
##             1             2             3             4             5 
## -7.080265e+04 -1.837823e+05 -6.872965e+04  4.898835e+04 -1.511084e+05 
##             6             7             8             9            10 
## -1.651778e+05 -3.172410e+04  4.597407e+04  4.351248e+04  6.868642e+04 
##            11            12            13            14            15 
##  4.717018e+04  8.870841e+04  2.659889e+04 -1.406678e+05  4.322639e+04 
##            16            17            18            19            20 
##  6.410324e+04  4.356690e+04  9.617581e+04  5.209503e+04  5.344340e+04 
##            21            22            23            24            25 
##  5.126994e+04  1.286712e+05  6.144089e+04 -8.527361e+04  5.306705e+04 
##            26            27            28            29            30 
## -2.115557e+05  5.086726e+04 -9.067367e+04 -1.018645e+05  4.941621e+04 
##            31            32            33            34            35 
##  4.691557e+04  5.063852e+04 -2.206923e+05  4.619044e+04  4.322025e+04 
##            36            37            38            39            40 
## -8.941545e+04 -1.406526e+05  1.076670e+05  7.478305e+04 -1.533592e+04 
##            41            42            43            44            45 
##  5.669106e+04 -9.094950e+04  6.564862e+04  4.254717e+04 -4.210503e+04 
##            46            47            48            49            50 
## -1.283347e+05  5.779817e+04  6.108818e+04  3.845990e+04 -1.869390e+05 
##            51            52            53            54            55 
## -1.485299e+05 -1.972129e+05  1.385746e+05  4.445612e+04 -1.337372e+04 
##            56            57            58            59            60 
##  9.613192e+04  1.270016e+04 -1.946237e+05  8.922104e+04 -1.003543e+05 
##            61            62            63            64            65 
##  9.231811e+04  4.277959e+04  7.820937e+04 -9.370171e+04  5.668352e+04 
##            66            67            68            69            70 
##  5.044066e+04 -1.035963e+05  5.197514e+04  1.388085e+05  8.404635e+04 
##            71            72            73            74            75 
## -1.000051e+05  2.332772e+04 -1.567074e+05  6.228427e+04  1.254889e+04 
##            76            77            78            79            80 
## -2.157079e+05  5.955777e+04 -2.549314e+04 -1.883504e+05  5.281153e+04 
##            81            82            83            84            85 
##  9.035368e+03  5.174659e+04  7.254986e+04  3.343088e+04 -3.951111e+04 
##            86            87            88            89            90 
## -7.989897e+04  5.408293e+02  4.804560e+04 -1.990736e+05 -6.094713e+04 
##            91            92            93            94            95 
##  1.713112e+04 -1.021422e+05  6.112017e+04 -1.529284e+05 -4.887937e+04 
##            96            97            98            99           100 
##  6.229681e+04 -1.922914e+05 -6.018381e+04  6.429584e+04  6.147152e+04 
##           101           102           103           104           105 
##  6.639327e+04 -1.008310e+05 -6.511121e+03  6.222727e+04 -1.671609e+05 
##           106           107           108           109           110 
## -3.789605e+04 -1.903855e+05 -1.520181e+05 -1.202487e+05  1.241108e+05 
##           111           112           113           114           115 
##  5.266590e+04  6.963578e+04  9.934250e+04 -1.751783e+05  7.398499e+04 
##           116           117           118           119           120 
##  6.628063e+04  1.324419e+05  5.941608e+04 -1.505448e+05 -1.152357e+05 
##           121           122           123           124           125 
##  7.128818e+04  2.217733e+04 -7.208498e+04 -8.497316e+04 -1.609575e+05 
##           126           127           128           129           130 
##  5.364779e+04  1.184833e+05  6.465706e+04  2.309195e+04  6.898600e+04 
##           131           132           133           134           135 
##  8.005514e+04  7.547461e+04  7.719772e+04  2.160050e-10 -8.322322e+04 
##           136           137           138           139           140 
## -5.266426e+04  1.760175e+04  7.700262e+04  6.911855e+04  6.475400e+04 
##           141           142           143           144           145 
## -9.219195e+04  7.241160e+04  1.643991e+04 -1.581207e+05  1.154094e+05 
##           146           147           148           149           150 
##  1.642184e+05 -1.519442e+05  5.215224e+04 -1.757684e+05 -4.082610e+04 
##           151           152           153           154           155 
##  1.286942e+05  8.466265e+04 -1.490814e+05 -8.320973e+04  7.335652e+04 
##           156           157           158           159           160 
## -7.934461e+04  1.729288e+04 -1.339753e+05  8.105498e+04  3.378228e+04 
##           161           162           163           164           165 
##  6.927800e+04 -7.907581e+04  9.010255e+04  5.235566e+04 -1.087489e+05 
##           166           167           168           169           170 
## -5.144450e+04  3.304954e+04  6.968854e+04  1.043526e+05  1.716285e+05 
##           171           172           173           174           175 
##  7.595648e+04 -4.221257e+04 -1.998843e+04  7.740875e+04  1.305952e+05 
##           176           177           178           179           180 
##  7.541497e+04  3.779041e+04  7.898659e+04  9.365676e+04  8.419862e+04 
##           181           182           183           184           185 
## -1.343288e+05 -1.764164e+04 -1.395140e+05  1.586205e+04  1.302013e+05 
##           186           187           188           189           190 
##  6.594016e+04  6.216836e+04 -1.106106e+05  7.159684e+04 -9.600402e+04 
##           191           192           193           194           195 
## -5.189807e+04  5.043472e+04 -1.092196e+05  2.676702e+04  7.031612e+04 
##           196           197           198           199           200 
##  7.764842e+04 -1.285938e+05  2.041798e+04 -6.566110e+04  7.323887e+04 
##           201           202           203           204           205 
## -1.531486e+05  5.553256e+04 -1.648492e+05  8.328399e+04  7.207016e+04 
##           206           207           208           209           210 
## -1.329697e+05  2.696936e+04 -7.947455e+04  5.590813e+04  6.287923e+04 
##           211           212           213           214           215 
##  7.102412e+04  7.260799e+04  7.256546e+04  1.004369e+05 -1.228695e+05 
##           216           217           218           219           220 
## -1.734082e+05 -1.350893e+05 -9.007493e+04 -2.281086e+04  7.948374e+04 
##           221           222           223           224           225 
##  7.175832e+04  7.314367e+04  7.839801e+04  8.335458e+04 -1.837295e+05 
##           226           227           228           229           230 
## -3.154678e+04  4.691237e+04  8.265849e+04  7.388626e+04  7.376441e+04 
##           231           232           233           234           235 
##  1.371309e+05  6.277779e+04  5.851906e+04 -1.762815e+05  6.841930e+04 
##           236           237           238           239           240 
##  8.154569e+04  1.364205e+05 -1.202019e+05  3.195381e+04  6.839279e+04 
##           241           242           243           244           245 
##  6.400921e+04  5.039299e+04 -1.302089e+05  1.397632e+04  7.343801e+04 
##           246           247           248           249           250 
##  8.411099e+04 -1.022445e+05 -3.803557e+04  8.072755e+04 -1.922329e+05 
##           251           252           253           254           255 
## -1.260404e+05 -1.004736e+05  1.694501e+04  8.238618e+04  1.255786e+05 
##           256           257           258           259           260 
##  3.757579e+04  7.283572e+04  1.018314e+05  8.107269e+04  9.403632e+04 
##           261           262           263           264           265 
## -1.551244e+05 -1.403945e+05 -1.251178e+05  7.610006e+04  7.472887e+04 
##           266           267           268           269           270 
##  1.020326e+05  9.950799e+04  7.539659e+04  7.316787e+04  1.522385e+05 
##           271           272           273           274           275 
##  7.111689e+04  6.200383e+04  6.168797e+04 -1.762455e+05 -1.280969e+05 
##           276           277           278           279           280 
## -6.938988e+04 -2.799285e+04  7.782808e+04  7.820791e+04  9.060508e+04 
##           281           282           283           284           285 
## -1.350949e+05  4.418366e+04  8.706399e+04 -1.354965e+05 -4.575199e+04 
##           286           287           288           289           290 
##  2.837338e+04  7.618465e+04  7.166084e+04  9.364278e+04  1.615552e+05 
##           291           292           293           294           295 
##  5.142814e+04  8.050609e+04  7.207164e+04  1.116627e+05 -1.172399e+05 
##           296           297           298           299           300 
## -3.128472e+04  5.871616e+04  3.416081e+04  7.379809e+04 -1.156192e+05 
##           301           302           303           304           305 
## -8.397417e+04 -2.875086e+04  7.232033e+04  7.366870e+04  7.362618e+04 
##           306           307           308           309           310 
##  7.298804e+04  8.168756e+04 -1.677398e+05  7.918403e+04  7.063812e+04 
##           311           312           313           314           315 
##  5.816350e+04  6.008730e+04 -1.910121e+05 -1.871455e+05 -1.886311e+05 
##           316           317           318           319           320 
## -1.065581e+05 -2.182177e+04 -2.155013e+04  7.015071e+04  7.441286e+04 
##           321           322           323           324           325 
##  7.483397e+04  7.757324e+04  7.786238e+04  7.331549e+04  7.373660e+04 
##           326           327           328           329           330 
##  7.047754e+04  1.206117e+05  6.985872e+04  1.486020e+05  9.221507e+04 
##           331           332           333           334           335 
## -1.465098e+05 -1.588172e+04  7.839806e+04 -1.046397e+05  4.522531e+04 
##           336           337           338           339           340 
##  8.864926e+04  1.044125e+05 -1.835035e+05 -5.493044e+04  4.050667e+03 
##           341           342           343           344           345 
##  8.217491e+04 -6.178054e+04  5.166416e+04  6.081176e+04  1.115496e+05 
##           346           347           348           349           350 
##  5.411574e+04  9.465376e+04  5.238812e+04 -8.284098e+04 -2.442777e+04 
##           351           352           353           354           355 
##  4.577682e+04  8.283205e+04  6.926949e+04  9.211704e+04 -2.558281e+04 
##           356           357           358           359           360 
##  5.331696e+04  6.856773e+04  4.741412e+04 -1.501678e+05 -5.740514e+04 
##           361           362           363           364           365 
## -7.638129e+04  3.109399e+04  1.029737e+04  5.201265e+04  7.549425e+04 
##           366           367           368           369           370 
##  7.226482e+04  9.311811e+04  7.899719e+04  8.639377e+04  1.092867e+05 
##           371           372           373           374           375 
##  1.259004e+05  1.388271e+05  8.767744e+04 -1.817550e+05 -1.614772e+05 
##           376           377           378           379           380 
## -1.646203e+05 -1.273058e+05 -1.092978e+05 -9.582216e+04  4.978636e+04 
##           381           382           383           384           385 
##  8.639336e+04  1.644622e+05  6.524717e+04 -4.579920e+04  8.535456e+04 
##           386           387           388           389           390 
## -1.687641e+05 -1.595387e+05 -4.679835e+04 -1.942393e+02  7.771078e+04 
##           391           392           393           394           395 
##  1.345414e+05  1.506926e+05  4.793272e+04  1.052952e+05 -1.600276e+05 
##           396           397           398           399           400 
## -1.576691e+05  1.015145e+03  4.370594e+03  7.711039e+04  7.217379e+04 
##           401           402           403           404           405 
##  7.062004e+04  1.740707e+05 -5.142042e+04  4.907116e+04  5.746163e+04 
##           406           407           408           409           410 
## -1.533386e+05 -8.464946e+04 -4.497555e+04  4.155370e+04  7.535930e+04 
##           411           412           413           414           415 
##  7.776691e+04  8.038852e+04  6.040664e+04 -1.659366e+05 -1.498781e+05 
##           416           417           418           419           420 
## -3.722478e+04  7.115740e+03 -3.029102e+04 -9.162459e+03  3.443782e+04 
##           421           422           423           424           425 
##  1.324862e+05  7.349176e+04  1.586853e+05  3.113347e+04 -2.119503e+04 
##           426           427           428           429           430 
## -5.764630e+04 -1.787645e+05 -1.940479e+05 -1.576186e+05 -7.454975e+04 
##           431           432           433           434           435 
## -4.645265e+04  3.266766e+04  5.091187e+04  7.824707e+04  7.472326e+04 
##           436           437           438           439           440 
##  6.968464e+04  1.352301e+05  6.945389e+04  3.454226e+04 -1.998786e+05 
##           441           442           443           444           445 
## -1.589271e+05 -9.520393e+04  3.193264e+04  3.113326e+04  8.656004e+04 
##           446           447           448           449           450 
##  1.364881e+05  7.303014e+04 -5.626693e+04  7.736367e+04  5.178091e+04 
##           451           452           453           454           455 
##  7.686436e+04  9.362217e+04 -1.625578e+05 -1.731367e+05 -1.305872e+05 
##           456           457           458           459           460 
## -1.341095e+05 -6.823470e+04 -7.677975e+04 -6.162862e+04  5.566766e+03 
##           461           462           463           464           465 
##  7.002122e+04  9.644095e+04  1.175817e+05 -1.785497e+05 -1.209863e+05 
##           466           467           468           469           470 
##  6.198003e+04  6.145236e+04  2.775389e+04  6.578955e+04  4.468202e+04 
##           471           472           473           474           475 
##  8.090773e+04 -1.420238e+05 -1.403578e+05 -2.891261e+04 -3.020829e+04 
##           476           477           478           479           480 
##  6.536182e+04 -1.284854e+05  1.201905e+04  6.317776e+04 -1.541625e+05 
##           481           482           483           484           485 
## -1.196822e+05 -1.039050e+05 -4.269066e+04 -7.404007e+04 -4.554361e+04 
##           486           487           488           489           490 
## -4.176718e+04  1.734428e+04  7.297411e+04  9.359888e+04  8.951884e+04 
##           491           492           493           494           495 
##  1.109086e+05  1.523112e+05 -2.411513e+04  5.544505e+04  6.030273e+04 
##           496           497           498           499           500 
##  5.987611e+04  8.428732e+04 -1.795956e+05 -1.925244e+05 -1.363267e+05 
##           501           502           503           504           505 
## -7.300732e+04 -1.082453e+05 -9.483701e+04 -4.147424e+03  7.580963e+04 
##           506           507           508           509           510 
##  7.115126e+04  6.637005e+04  7.665943e+04  7.578464e+04 -5.899235e+04 
##           511           512           513           514           515 
##  1.097014e+04  6.507211e+04  5.104070e+04  7.003297e+04 -1.668271e+05 
##           516           517           518           519           520 
## -1.781220e+05 -1.344853e+05 -8.845365e+04 -3.506538e+04  3.347109e+04 
##           521           522           523           524           525 
##  6.642705e+04  7.518912e+04  7.492463e+04  9.891274e+04  1.585746e+05 
##           526           527           528           529           530 
## -1.454724e+05 -8.806828e+04  5.484888e+04  5.747936e+04  7.902417e+04 
##           531           532           533           534           535 
## -1.777362e+05 -1.676288e+05 -1.119509e+05 -5.534599e+04 -4.446511e+04 
##           536           537           538           539           540 
## -3.890278e+03  4.042188e+04  4.664752e+04  7.216304e+04  7.569761e+04 
##           541           542           543           544           545 
##  7.110793e+04  6.865806e+04 -1.001570e+05 -9.807264e+04 -5.090339e+04 
##           546           547           548           549           550 
##  1.369139e+05  7.145019e+04  5.514682e+04  4.818458e+04  5.664118e+04 
##           551           552           553           554           555 
## -1.607022e+05 -4.537353e+04 -1.803015e+04  1.157733e+04  4.068901e+04 
##           556           557           558           559           560 
##  7.024048e+04  7.410299e+04  8.420444e+04 -1.581959e+05 -6.271310e+03 
##           561           562           563           564           565 
##  6.625192e+04  8.493092e+04  6.484648e+04 -1.659320e+05 -1.517531e+05 
##           566           567           568           569           570 
## -1.085967e+05 -5.859029e+04  2.258361e+04  2.054468e+04  5.362572e+04 
##           571           572           573           574           575 
##  7.689680e+04  7.870881e+04  7.751670e+04  1.251731e+05  7.520382e+04 
##           576           577           578           579           580 
##  7.204784e+04  6.760993e+04  1.209783e+05  1.357640e+05 -1.093042e+05 
##           581           582           583           584           585 
## -7.715020e+04  6.000864e+04  9.737641e+04  3.459685e+04  8.904127e+04 
##           586           587           588           589           590 
##  5.379783e+04 -1.998819e+05 -1.204218e+05 -1.191904e+05 -1.170230e+05 
##           591           592           593           594           595 
## -5.758514e+04  3.429571e+04  4.792022e+04  8.278118e+04  6.950489e+04 
##           596           597           598           599           600 
##  1.056452e+05  1.750514e+05 -1.579813e+05 -1.388021e+05 -7.591514e+04 
##           601           602           603           604           605 
## -1.099631e+03  5.736618e+04  6.459454e+04 -2.102013e+05 -1.953516e+05 
##           606           607           608           609           610 
## -1.571380e+05 -1.552206e+05 -1.493911e+05 -1.238971e+05 -8.046267e+04 
##           611           612           613           614           615 
## -2.414680e+04  9.193608e+03 -3.149926e+04 -3.683083e+03  6.116574e+04 
##           616           617           618           619           620 
##  7.032017e+04  6.790831e+04  7.117148e+04  6.956808e+04  7.719855e+04 
##           621           622           623           624           625 
##  7.298332e+04  7.015899e+04  7.289827e+04  6.716017e+04  9.386898e+04 
##           626           627           628           629           630 
##  1.032157e+05 -1.600808e+05  1.505803e+04 -3.536090e+04  2.044551e+04 
##           631           632           633           634           635 
##  4.381802e+04  6.874568e+04  6.211970e+04  7.955067e+04  5.387416e+04 
##           636           637           638           639           640 
##  6.499801e+04  6.064448e+04 -2.000765e+05 -1.937329e+05 -1.732184e+05 
##           641           642           643           644           645 
## -1.752288e+05 -1.485664e+05 -1.203527e+05 -1.109884e+05 -6.919459e+04 
##           646           647           648           649           650 
## -5.885372e+04 -2.240022e+04 -3.795851e+04  1.863842e+04  4.474214e+04 
##           651           652           653           654           655 
##  7.346377e+04  7.252754e+04  7.554184e+04  6.591806e+04  7.296201e+04 
##           656           657           658           659           660 
##  7.801945e+04  6.347232e+04  1.013325e+05 -1.902349e+05 -9.087333e+04 
##           661           662           663           664           665 
## -3.633169e+04  4.695488e+04  6.089040e+04  5.314260e+04  1.016560e+05 
##           666           667           668           669           670 
## -5.927110e+04 -2.045470e+04 -1.819456e+05 -1.315193e+05 -8.505575e+04 
##           671           672           673           674           675 
## -1.181620e+05 -7.847962e+04 -2.349853e+04  4.808928e+04  6.533510e+04 
##           676           677           678           679           680 
##  7.282332e+04  7.066921e+04  7.062669e+04  7.333772e+04  7.981431e+04 
##           681           682           683           684           685 
##  8.403745e+04  7.462929e+04  6.948679e+04  7.037153e+04  6.806995e+04 
##           686           687           688           689           690 
## -1.500511e+05 -1.305714e+05 -9.029157e+04 -7.370367e+04  4.369712e+04 
##           691           692           693           694           695 
##  4.883741e+04  1.047947e+05 -1.891757e+05 -1.647432e+05 -1.448764e+05 
##           696           697           698           699           700 
## -1.244553e+05 -4.336044e+04  1.618821e+04  6.592628e+04  6.635903e+04 
##           701           702           703           704           705 
##  7.153680e+04  6.763301e+04  7.583905e+04  6.942271e+04  6.613475e+04 
##           706           707           708           709           710 
##  6.715147e+04  7.125085e+04  7.073407e+04  6.890733e+04  6.645593e+04 
##           711           712           713           714           715 
##  1.560465e+05 -1.767596e+05 -4.219276e+04  6.358545e+03  6.050058e+04 
##           716           717           718           719           720 
##  6.853018e+04  3.319075e+03  4.614035e+04  7.579978e+04 -1.754070e+05 
##           721           722           723           724           725 
## -1.374120e+05 -1.386286e+05 -1.071852e+05 -1.153804e+05 -3.584873e+04 
##           726           727           728           729           730 
## -2.969411e+04 -1.691551e+03  2.271209e+04  5.075907e+04  6.718151e+04 
##           731           732           733           734           735 
##  6.890380e+04  6.932490e+04  8.922908e+04  6.692168e+04  7.770208e+04 
##           736           737           738           739           740 
##  6.730027e+04  6.949103e+04  6.291054e+04  1.201443e+05 -1.817186e+05 
##           741           742           743           744           745 
## -1.360813e+05 -8.609637e+04 -4.089463e+04  4.577119e+04  7.530786e+04 
##           746           747           748           749           750 
##  5.354787e+04  4.572086e+04  6.077757e+04  4.669128e+04  4.912500e+04 
##           751           752           753           754           755 
##  1.014006e+05  7.363350e+04  6.775004e+04  6.461572e+04 -1.941286e+05 
##           756           757           758           759           760 
## -1.526272e+05 -1.341189e+05 -8.550526e+04 -5.514724e+04 -3.615050e+04 
##           761           762           763           764           765 
## -2.811099e+04  3.660845e+04  6.884304e+04  6.797353e+04  6.777937e+04 
##           766           767           768           769           770 
##  7.613522e+04  7.808910e+04  7.855156e+04  7.909802e+04  6.656957e+04 
##           771           772           773           774           775 
##  6.788541e+04  6.335286e+04  6.455201e+04  9.328562e+04  1.774418e+05 
##           776           777           778           779           780 
##  1.884829e+05 -1.573453e+05 -4.480798e+04  2.551377e+04  4.467624e+04 
##           781           782           783           784           785 
##  5.855651e+04  5.090750e+04 -1.174594e+05 -1.176375e+05 -1.149616e+05 
##           786           787           788           789           790 
## -6.305274e+04 -1.444784e+04  7.180805e+04  6.533570e+04  6.493924e+04 
##           791           792           793           794           795 
##  6.350581e+04  6.485419e+04  7.059314e+04  6.675564e+04  6.810402e+04 
##           796           797           798           799           800 
##  6.620696e+04  6.644375e+04  6.852445e+04  1.563249e+05  1.229820e+05 
##           801           802           803           804           805 
## -1.274551e+05 -9.126625e+04 -6.212864e+04  4.678360e+04  3.168622e+04 
##           806           807           808           809           810 
##  5.658628e+04  8.060734e+04  3.435937e+04  5.166653e+04  9.325046e+04 
##           811           812           813           814           815 
## -1.586235e+05 -1.592273e+05 -9.751746e+04 -6.610669e+04 -2.614940e+04 
##           816           817           818           819           820 
##  6.694009e+04  7.886324e+04  6.192765e+04  6.572617e+04  6.369714e+04 
##           821           822           823           824           825 
##  6.228853e+04  7.069856e+04  6.707531e+04  6.681374e+04  6.457847e+04 
##           826           827           828           829           830 
##  6.635575e+04  6.631869e+04  6.395253e+04  7.596448e+04  6.327188e+04 
##           831           832           833           834           835 
##  6.879295e+04  7.142835e+04  6.592610e+04  6.230612e+04  6.422339e+04 
##           836           837           838           839           840 
##  7.010319e+04  6.458297e+04  6.386767e+04  6.626655e+04  6.436949e+04 
##           841           842           843           844           845 
##  6.683047e+04  6.335717e+04  6.609644e+04  6.175798e+04  9.341225e+04 
##           846           847           848           849           850 
##  1.273667e+05 -1.350985e+05  2.480615e+04  6.991847e+04  6.435775e+04 
##           851           852           853           854           855 
##  5.832123e+04 -1.416019e+05 -1.673125e+05 -1.382514e+05 -8.078469e+04 
##           856           857           858           859           860 
## -1.782414e+04  9.935243e+04  4.550443e+04  6.615022e+04  6.447991e+04 
##           861           862           863           864           865 
##  7.463732e+04  6.578576e+04  7.290652e+04  6.232330e+04  7.257607e+04 
##           866           867           868           869           870 
##  1.025521e+05  1.541190e+05 -1.875314e+05 -9.177967e+04 -6.537199e+04 
##           871           872           873           874           875 
## -8.666445e+04 -7.688240e+04 -4.449379e+04  4.256020e+04  7.484639e+04 
##           876           877           878           879           880 
##  5.891861e+04  4.385776e+04  8.718120e+04  5.102430e+04  4.930085e+04 
##           881           882           883           884           885 
## -2.008315e+05 -1.839042e+05 -1.634915e+05 -7.236304e+04  6.121900e+04 
##           886           887           888           889           890 
##  6.526245e+04  6.311053e+04  9.226354e+04 -1.296010e+05 -1.462053e+05 
##           891           892           893           894           895 
## -9.511426e+04  3.231803e+04  5.927222e+04 -8.114075e+04 -4.162275e+04 
##           896           897           898           899           900 
##  6.356973e+04  7.891702e+04 -2.038389e+05 -1.790842e+05 -1.803391e+05 
##           901           902           903           904           905 
## -1.098522e+05 -1.172508e+05 -1.193814e+05 -1.032969e+05 -4.543816e+04 
##           906           907           908           909           910 
## -4.821740e+04  4.066671e+04  4.727074e+04  7.743764e+04  5.997082e+04 
##           911           912           913           914           915 
##  5.654608e+04  6.147591e+04  1.005981e+05  1.474607e+05 -1.583145e+05 
##           916           917           918           919           920 
##  1.003371e+05  7.146025e+04 -3.460877e+04 -1.939239e+05 -1.426780e+05 
##           921           922           923           924           925 
## -1.811436e+05 -1.455648e+05 -1.325054e+05 -7.667143e+04 -4.102987e+04 
##           926           927           928           929           930 
## -6.786446e+04  1.733977e+04 -4.311035e+03  6.124700e+04  6.484956e+04 
##           931           932           933           934           935 
##  6.202523e+04  6.290997e+04  6.459000e+04  7.057471e+04  6.314761e+04 
##           936           937           938           939           940 
##  6.923073e+04  6.269734e+04  6.404571e+04  6.261229e+04  6.965144e+04 
##           941           942           943           944           945 
##  5.868619e+04  8.561413e+04  1.247572e+05  1.179504e+05 -1.185704e+05 
##           946           947           948           949           950 
## -1.581801e+05 -9.421757e+04 -2.059282e+04  4.236431e+04  2.496127e+04 
##           951           952           953           954           955 
##  2.140393e+04  5.768989e+04  7.643694e+04  5.874076e+04  9.607084e+04 
##           956           957           958           959           960 
## -2.049316e+05 -2.054315e+05 -1.889757e+05 -1.839778e+05 -1.849154e+05 
##           961           962           963           964           965 
## -1.462966e+05 -1.294035e+05 -1.207976e+05 -3.923694e+04 -9.280630e+04 
##           966           967           968           969           970 
## -4.793591e+04 -1.889988e+04 -3.987822e+04 -1.739852e+04  1.109457e+03 
##           971           972           973           974           975 
##  1.368952e+04  6.155118e+04  6.177924e+04  6.182997e+04  6.422849e+04 
##           976           977           978           979           980 
##  6.478157e+04  7.122991e+04  7.165102e+04  6.048129e+04  6.414783e+04 
##           981           982           983           984           985 
##  6.876028e+04  6.735342e+04  6.796037e+04  6.168402e+04  1.097270e+05 
##           986           987           988           989           990 
## -1.427216e+05 -6.869413e+04 -3.544704e+04 -2.056621e+04  6.183215e+04 
##           991           992           993           994           995 
##  2.730706e+04  5.525729e+04  4.096683e+04 -1.917126e+05 -1.943836e+05 
##           996           997           998           999          1000 
## -1.445794e+05 -1.029893e+05 -1.105266e+05 -4.574983e+04 -6.537669e+04 
##          1001          1002          1003          1004          1005 
## -3.615379e+04 -4.250412e+04  4.849764e+04  3.869260e+04  7.174307e+04 
##          1006          1007          1008          1009          1010 
##  6.136281e+04  1.014744e+05  1.021379e+05 -1.766729e+05 -1.380409e+05 
##          1011          1012          1013          1014          1015 
## -4.582746e+04 -5.376089e+04 -4.129058e+03  6.865280e+04  3.687305e+04 
##          1016          1017          1018          1019          1020 
##  5.035920e+04  7.617799e+04 -2.172169e+05 -1.983192e+05 -1.928495e+05 
##          1021          1022          1023          1024          1025 
## -1.728806e+05 -1.661862e+05 -1.537673e+05 -1.307246e+05 -8.158538e+04 
##          1026          1027          1028          1029          1030 
## -5.876840e+04 -4.373610e+04 -2.034668e+04  1.784208e+04  6.254586e+04 
##          1031          1032          1033          1034          1035 
##  6.019182e+04  6.521234e+04  9.845083e+04 -1.937705e+05 -1.215867e+05 
##          1036          1037          1038          1039          1040 
## -1.033471e+05 -1.183801e+05 -3.595494e+04 -1.908894e+04  4.389134e+04 
##          1041          1042          1043          1044          1045 
##  5.885542e+04  2.430785e+04  6.152910e+04  4.381329e+04  4.016748e+04 
##          1046          1047          1048          1049          1050 
##  5.958719e+03 -1.923325e+05 -1.851902e+05 -1.528083e+05 -1.290897e+05 
##          1051          1052          1053          1054          1055 
## -4.949782e+04 -3.954499e+04  1.246804e+04  5.488209e+04  4.840853e+04 
##          1056          1057          1058          1059          1060 
##  7.028955e+04  6.076777e+04  6.357175e+04  5.751190e+04  5.515120e+04 
##          1061          1062          1063          1064          1065 
##  6.009195e+04 -1.055999e+05 -8.413983e+04  4.433545e+04  3.541810e+04 
##          1066          1067          1068          1069          1070 
##  5.395034e+04  3.638785e+04  4.705773e+04  8.746807e+04 -2.079357e+05 
##          1071          1072          1073          1074          1075 
## -1.761557e+05 -1.626108e+05 -9.916001e+04 -7.807685e+04 -4.228109e+04 
##          1076          1077          1078          1079          1080 
##  2.113056e+04  7.009585e+04  2.011657e+05 -3.780194e+04  2.651923e+04 
##          1081          1082          1083          1084          1085 
##  6.911859e+04  8.859044e+03  2.752810e+04  6.366753e+04  5.048060e+04 
##          1086          1087          1088          1089          1090 
##  4.640052e+04  5.459236e+04 -1.981265e+05 -1.601701e+05 -7.669737e+04 
##          1091          1092          1093          1094          1095 
## -9.281530e+04 -6.815488e+04 -3.416138e+04 -5.456668e+04 -2.098450e+04 
##          1096          1097          1098          1099          1100 
##  5.095040e+04  5.272996e+04  6.046673e+04  9.093732e+04  1.089026e+05 
##          1101          1102          1103          1104          1105 
## -1.579097e+05 -1.363580e+05 -1.050256e+05  8.857036e+04  6.440902e+04 
##          1106          1107          1108          1109          1110 
##  1.015590e+05  6.775214e+04  5.206495e+04 -2.157451e+05 -1.791609e+05 
##          1111          1112          1113          1114          1115 
## -1.095216e+05 -1.054793e+05 -9.921908e+04 -1.796707e+04 -4.070768e+04 
##          1116          1117          1118          1119          1120 
##  1.520429e+04  3.178245e+04  6.470705e+04  5.704787e+04  6.479849e+04 
##          1121          1122          1123          1124          1125 
## -1.706255e+05 -1.420983e+05 -1.196289e+05 -9.819342e+04 -2.959091e+04 
##          1126          1127          1128          1129          1130 
##  9.113321e+04  4.662224e+04  5.457088e+04  4.630780e+04  5.433912e+04 
##          1131          1132          1133          1134          1135 
## -1.855351e+05 -1.279847e+05 -1.279031e+05 -6.950893e+04 -6.133964e+04 
##          1136          1137          1138          1139          1140 
## -1.372079e+04  4.516831e+04  3.778533e+04  6.166266e+04  6.546117e+04 
##          1141          1142          1143          1144          1145 
##  6.006419e+04  1.011683e+05 -1.959730e+05 -1.572923e+05 -7.800821e+04 
##          1146          1147          1148          1149          1150 
## -8.272127e+04 -7.617267e+04  1.492660e+04 -6.197851e+02  5.302380e+04 
##          1151          1152          1153          1154          1155 
## -1.126318e+04  5.808710e+04  7.202604e+04  3.814750e+04 -2.097521e+05 
##          1156          1157          1158          1159          1160 
## -1.745106e+05 -1.750079e+05 -1.298744e+05 -1.107614e+05 -4.492931e+04 
##          1161          1162          1163          1164          1165 
##  1.754256e+04  3.331048e+04  4.582594e+04  8.093404e+04  6.339146e+04 
##          1166          1167          1168          1169          1170 
##  5.915723e+04  6.575293e+04 -1.749869e+05 -1.459479e+05 -6.444810e+04 
##          1171          1172          1173          1174          1175 
## -6.396408e+04 -3.807790e+04  1.662901e+04 -7.575558e+03  2.168377e+04 
##          1176          1177          1178          1179          1180 
##  4.132593e+04  4.405865e+04 -1.730644e+05 -9.191721e+04 -8.750883e+04 
##          1181          1182          1183          1184          1185 
## -6.282959e+04  3.327795e+04  3.957289e+04  1.053373e+05  6.482144e+04 
##          1186          1187          1188          1189          1190 
##  5.617575e+04  6.575970e+04  1.295099e+05 -1.281279e+05 -1.537797e+04 
##          1191          1192          1193          1194          1195 
##  3.780005e+04  2.068184e+04  3.399159e+04  9.987232e+04  2.271824e+04 
##          1196          1197          1198          1199          1200 
## -1.498199e+05 -1.521694e+05 -1.811373e+05 -1.372818e+05 -1.575530e+05 
##          1201          1202          1203          1204          1205 
## -1.287864e+05 -7.477485e+04 -4.102333e+04 -7.959728e+04 -6.492285e+04 
##          1206          1207          1208          1209          1210 
## -4.195827e+02 -4.401008e+04 -3.347624e+04  5.077674e+04  5.271711e+04 
##          1211          1212          1213          1214          1215 
##  5.870181e+04  6.236836e+04  1.069598e+05  5.599131e+04  5.558459e+04 
##          1216          1217          1218          1219          1220 
##  8.254737e+04  1.355451e+05 -1.475981e+05  5.964894e+04  5.359012e+04 
##          1221          1222          1223          1224          1225 
##  6.062766e+04  7.848268e+04 -1.546394e+05  4.863539e+04  4.277444e+04 
##          1226          1227          1228          1229          1230 
## -9.666829e+04 -1.336994e+05 -8.267483e+04 -2.497933e+04  6.287614e+04 
##          1231          1232          1233          1234          1235 
##  5.858992e+04  1.128733e+05 -3.042799e+04  5.970357e+04  4.855040e+04 
##          1236          1237          1238          1239          1240 
##  5.075007e+04  6.192999e+04  6.933572e+04  3.901012e+04  8.550459e+04 
##          1241          1242          1243          1244          1245 
##  4.675665e+04  4.369415e+04 -1.717936e+05 -7.671322e+04 -5.062904e+04 
##          1246          1247          1248          1249          1250 
## -1.316727e+04 -9.822769e+03 -6.892468e+02  3.042907e+04  9.167035e+04 
##          1251          1252          1253          1254          1255 
##  5.335906e+04  5.895067e+04  5.494766e+04  6.007511e+04  5.435310e+04 
##          1256          1257          1258          1259          1260 
##  9.430384e+04 -1.667090e+05 -1.118964e+05 -8.878259e+04 -3.600054e+04 
##          1261          1262          1263          1264          1265 
##  9.180094e+02  4.425214e+04  3.089941e+04  4.563527e+04 -2.313660e+04 
##          1266          1267          1268          1269          1270 
##  7.545612e+04  1.032897e+05  5.851154e+02  1.323621e+04  4.577830e+04 
##          1271          1272          1273          1274          1275 
##  5.975759e+04 -1.958742e+05 -1.549964e+05 -9.197533e+04 -7.855139e+04 
##          1276          1277          1278          1279          1280 
## -2.548894e+04 -6.021793e+03  7.196113e+04  5.452017e+04  7.766654e+04 
##          1281          1282          1283          1284          1285 
##  6.189999e+04  6.765588e+04  1.106830e+05 -1.818645e+05 -1.478803e+05 
##          1286          1287          1288          1289          1290 
## -1.411415e+05 -7.937768e+04 -1.613776e+04  5.133482e+04 -5.515175e+04 
##          1291          1292          1293          1294          1295 
##  4.670636e+04  4.024099e+04  7.986255e+04  5.102812e+04  4.002309e+04 
##          1296          1297          1298          1299          1300 
## -1.884117e+05 -1.743706e+05 -1.249768e+05 -7.633966e+04 -4.853814e+04 
##          1301          1302          1303          1304          1305 
##  4.355393e+04 -4.489846e+04 -3.202138e+04  2.110172e+04  5.118701e+04 
##          1306          1307          1308          1309          1310 
##  5.142824e+04  1.130040e+05 -2.018553e+05  3.629408e+04  3.708710e+04 
##          1311          1312          1313          1314          1315 
##  4.052307e+04  3.815025e+04  4.170528e+04  4.909211e+04 -2.197221e+05 
##          1316          1317          1318          1319          1320 
## -1.877302e+05 -1.724103e+05 -1.660444e+05 -1.558574e+05 -1.419010e+05 
##          1321          1322          1323          1324          1325 
## -1.222199e+05 -7.793872e+04 -8.441964e+04 -7.125883e+04 -2.343508e+04 
##          1326          1327          1328          1329          1330 
##  3.549821e+04  4.245953e+04  5.402663e+04  5.862044e+04  4.917327e+04 
##          1331          1332          1333          1334          1335 
##  5.436268e+04  6.043329e+04  5.646382e+04  5.840781e+04  5.645186e+04 
##          1336          1337          1338          1339          1340 
##  5.634345e+04  5.225299e+04  6.522867e+04  5.355884e+04  5.722538e+04 
##          1341          1342          1343          1344          1345 
##  5.579196e+04  8.730676e+04  1.041077e+05 -1.718162e+05 -1.164867e+05 
##          1346          1347          1348          1349          1350 
## -5.972559e+04  4.340000e+03  4.111647e+04  4.884383e+04  3.467810e+04 
##          1351          1352          1353          1354          1355 
##  4.966836e+04  2.344622e+04  2.154447e+04 -3.799645e+04  2.488240e+04 
##          1356          1357          1358          1359          1360 
## -2.145762e+05 -2.045637e+05 -1.079996e+05 -7.114599e+04 -5.318255e+04 
##          1361          1362          1363          1364          1365 
##  5.464205e+02  5.020519e+04  5.245892e+04  5.345663e+04  5.190510e+04 
##          1366          1367          1368          1369          1370 
##  5.768755e+04  5.420584e+04  5.805484e+04  5.626268e+04  8.743050e+04 
##          1371          1372          1373          1374          1375 
##  1.412698e+05 -1.070999e+05  7.737891e+04  4.648567e+03  3.911911e+04 
##          1376          1377          1378          1379          1380 
##  2.585543e+04  3.167124e+04 -9.227677e+03  5.185934e+04 -2.137453e+05 
##          1381          1382          1383          1384          1385 
## -1.650863e+05 -3.083872e+04 -1.223312e+05 -1.100074e+05 -7.241279e+04 
##          1386          1387          1388          1389          1390 
## -8.699513e+04 -6.760602e+04 -3.417562e+04 -3.887605e+04 -3.228397e+04 
##          1391          1392          1393          1394          1395 
##  2.222885e+04 -2.361024e+03  2.512439e+04  7.288327e+04  4.833096e+04 
##          1396          1397          1398          1399          1400 
##  4.967934e+04  6.614898e+04  6.117522e+04  5.789716e+04  5.788677e+04 
##          1401          1402          1403          1404          1405 
##  5.469865e+04  5.550841e+04  5.819069e+04  5.212093e+04  5.360128e+04 
##          1406          1407          1408          1409          1410 
##  5.481768e+04  5.293263e+04  5.227327e+04  7.597777e+04  1.015371e+05 
##          1411          1412          1413          1414          1415 
##  1.180242e+05 -1.828093e+05 -1.530081e+05 -8.443452e+04  2.137647e+04 
##          1416          1417          1418          1419          1420 
##  1.573290e+04  3.152369e+04  1.516909e+04  2.984875e+04 -4.217482e+03 
##          1421          1422          1423          1424          1425 
##  4.864549e+04  4.040048e+04  2.664742e+04  3.167418e+04  3.747547e+04 
##          1426          1427          1428          1429          1430 
## -2.021543e+05 -1.542249e+05 -1.281069e+05 -5.165423e+04 -4.298340e+04 
##          1431          1432          1433          1434          1435 
##  2.413723e+04  4.866330e+04  5.220837e+04  5.533084e+04  5.273313e+04 
##          1436          1437          1438          1439          1440 
##  5.602571e+04  5.620162e+04  5.884789e+04  5.543450e+04  5.261018e+04 
##          1441          1442          1443          1444          1445 
##  9.790107e+04  1.240670e+05 -1.968648e+05 -1.293105e+05 -4.754418e+04 
##          1446          1447          1448          1449          1450 
##  8.326051e+04  4.055741e+04  1.666941e+04  5.832833e+04  4.342375e+04 
##          1451          1452          1453          1454          1455 
## -2.150459e+05 -1.375315e+05 -9.704370e+04 -2.337025e+04 -7.114313e+03 
##          1456          1457          1458          1459          1460 
## -3.737728e+03  3.151389e+04  4.863295e+04  5.786309e+04  5.550240e+04 
##          1461          1462          1463          1464          1465 
##  4.796676e+04  4.647634e+04  5.954752e+04  5.394140e+04  5.885183e+04 
##          1466          1467          1468          1469          1470 
##  5.731056e+04  5.195928e+04  4.913496e+04  5.112684e+04  4.814710e+04 
##          1471          1472          1473          1474          1475 
##  4.980267e+04  4.942849e+04  5.998358e+04  1.041289e+05  1.492045e+05 
##          1476          1477          1478          1479          1480 
## -1.504544e+05 -3.600788e+04  3.571374e+03  2.450335e+04  4.113310e+04 
##          1481          1482          1483          1484          1485 
##  6.675677e+04  6.664905e+04  4.302421e+04  1.702820e+04  2.443508e+04 
##          1486          1487          1488          1489          1490 
##  7.939357e+04 -2.092297e+05 -1.671951e+05 -1.571440e+05 -1.390001e+05 
##          1491          1492          1493          1494          1495 
## -1.079323e+05 -8.298936e+04 -5.592201e+04  1.111059e+04  4.584486e+04 
##          1496          1497          1498          1499          1500 
##  5.116772e+04  5.989623e+04  7.176139e+04  9.992994e+04 -1.828187e+05 
##          1501          1502          1503          1504          1505 
## -1.130616e+05 -9.420803e+04 -1.760577e+04 -9.249123e+02  3.054623e+04 
##          1506          1507          1508          1509          1510 
##  3.857479e+04  3.587946e+04  3.697525e+04  4.432993e+04 -1.592603e+05 
##          1511          1512          1513          1514          1515 
## -2.176898e+05 -4.208593e+04 -5.551907e+04 -3.906269e+04  6.552671e+04 
##          1516          1517          1518          1519          1520 
##  4.511311e+04  4.972184e+04  4.508950e+04  5.120618e+04  5.115595e+04 
##          1521          1522          1523          1524          1525 
##  5.019387e+04  4.711469e+04  4.918155e+04  5.132521e+04  4.686423e+04 
##          1526          1527          1528          1529          1530 
##  4.849192e+04  5.490670e+04  5.611902e+04  4.935305e+04  5.452055e+04 
##          1531          1532          1533          1534          1535 
##  5.023224e+04  5.575331e+04  4.445161e+04  4.805671e+04  4.483019e+04 
##          1536          1537          1538          1539          1540 
##  5.001961e+04  5.124510e+04  4.947092e+04  4.938560e+04  5.083923e+04 
##          1541          1542          1543          1544          1545 
##  5.202631e+04  5.105730e+04  4.833103e+04  4.537472e+04  4.685507e+04 
##          1546          1547          1548          1549          1550 
##  4.443549e+04  4.571078e+04  5.715413e+04 -1.990147e+05 -7.541202e+04 
##          1551          1552          1553          1554          1555 
## -6.799890e+04  3.052082e+04  8.310353e+04  3.576754e+04  6.740562e+04 
##          1556          1557          1558          1559          1560 
## -1.933093e+05 -1.558279e+05 -1.291732e+05 -7.920907e+04 -2.881954e+04 
##          1561          1562          1563          1564          1565 
## -5.875669e+04 -3.417326e+03  2.418010e+04  4.161409e+04  5.230678e+04 
##          1566          1567          1568          1569          1570 
##  4.831387e+04  5.058951e+04  6.264153e+04  5.077093e+04  4.953467e+04 
##          1571          1572          1573          1574          1575 
##  5.691028e+04  5.501322e+04  5.716598e+04  5.029183e+04  4.640826e+04 
##          1576          1577          1578          1579          1580 
##  5.716128e+04  4.957774e+04  5.058536e+04  4.590650e+04  5.218328e+04 
##          1581          1582          1583          1584          1585 
##  6.776115e+04  9.004639e+04  8.861846e+04  1.174703e+05  1.027674e+05 
##          1586          1587          1588          1589          1590 
##  1.031100e+05 -1.531730e+05 -1.675732e+05 -1.223390e+05 -6.987174e+04 
##          1591          1592          1593          1594          1595 
## -3.287431e+04  2.798695e+04  9.666473e+03  2.141072e+04  5.313344e+02 
##          1596          1597          1598          1599          1600 
##  1.252831e+05  2.955177e+04  3.555369e+04  4.440035e+04  3.079095e+04 
##          1601          1602          1603          1604          1605 
##  4.520090e+04  2.422886e+04 -1.921259e+05 -8.675044e+04 -3.739298e+04 
##          1606          1607          1608          1609          1610 
## -6.059044e+02  4.306125e+04  4.730113e+04  5.147258e+04  5.038828e+04 
##          1611          1612          1613          1614          1615 
##  1.013357e+05 -1.396050e+05  6.371253e+04  1.338263e+04  7.635346e+04 
##          1616          1617          1618          1619          1620 
## -1.827120e+05 -2.150194e+05 -1.432724e+05 -8.260519e+04 -7.465382e+04 
##          1621          1622          1623          1624          1625 
## -5.238804e+04 -4.143572e+04 -2.911055e+04 -2.184305e+04 -1.136494e+04 
##          1626          1627          1628          1629          1630 
## -3.965887e+03  2.128232e+04  5.455365e+04  5.881579e+04  5.399307e+04 
##          1631          1632          1633          1634          1635 
##  6.557970e+04  1.031152e+05 -2.085471e+05 -1.530766e+05 -1.759002e+05 
##          1636          1637          1638          1639          1640 
## -1.555350e+05 -9.521339e+04 -1.030399e+04 -2.199150e+04 -9.322245e+03 
##          1641          1642          1643          1644          1645 
##  3.787712e+04  8.376718e+04  2.241768e+04  1.745222e+04  1.600083e+04 
##          1646          1647          1648          1649          1650 
##  3.159171e+04  2.435872e+04  3.100643e+04  2.969938e+04  2.922359e+04 
##          1651          1652          1653          1654          1655 
##  2.445158e+04  3.124356e+04  3.459499e+04 -2.040761e+05 -1.453980e+05 
##          1656          1657          1658          1659          1660 
## -1.064263e+05 -8.013680e+04  8.739045e+03  1.908489e+04  4.488109e+04 
##          1661          1662          1663          1664          1665 
##  4.795820e+04  4.572330e+04  4.421781e+04  4.345461e+04  5.059284e+04 
##          1666          1667          1668          1669          1670 
##  4.389754e+04  4.128935e+04  4.642897e+04  4.728015e+04  4.491946e+04 
##          1671          1672          1673          1674          1675 
##  4.793805e+04  5.558133e+04  5.058362e+04  4.554465e+04  4.174770e+04 
##          1676          1677          1678          1679          1680 
##  5.022790e+04  5.129252e+04  5.818674e+04  4.957525e+04  5.237597e+04 
##          1681          1682          1683          1684          1685 
##  4.930588e+04  4.394551e+04  4.098921e+04  4.700202e+04  4.225589e+04 
##          1686          1687          1688          1689          1690 
##  4.178890e+04  4.280562e+04  5.382988e+04  4.642963e+04  4.314167e+04 
##          1691          1692          1693          1694          1695 
##  4.496218e+04  4.583842e+04  4.255046e+04  4.204430e+04  3.317732e+04 
##          1696          1697          1698          1699          1700 
##  6.195935e+04 -3.678913e+03  1.695998e+04 -2.120785e+05 -1.724858e+05 
##          1701          1702          1703          1704          1705 
## -1.533308e+05 -8.529991e+04 -1.260002e+05 -8.333921e+04 -6.394708e+04 
##          1706          1707          1708          1709          1710 
## -4.985262e+04 -3.961817e+03  6.682549e+03  2.345096e+04  3.975145e+04 
##          1711          1712          1713          1714          1715 
##  4.285528e+04  4.442597e+04  5.135694e+04  4.526818e+04  4.382485e+04 
##          1716          1717          1718          1719          1720 
##  4.703767e+04  1.646828e+03  4.741625e+04  4.134649e+04  4.607227e+04 
##          1721          1722          1723          1724          1725 
##  4.979581e+04  4.830538e+04  4.228625e+04  4.914760e+04  4.493237e+04 
##          1726          1727          1728          1729          1730 
##  4.614877e+04  5.275923e+04  4.295026e+04  4.741209e+04  4.139933e+04 
##          1731          1732          1733          1734          1735 
##  4.977718e+04  4.311181e+04  5.061940e+04  4.950773e+04  4.901147e+04 
##          1736          1737          1738          1739          1740 
##  4.353732e+04  4.383227e+04  4.480175e+04  4.602295e+04  1.137935e+05 
##          1741          1742          1743          1744          1745 
## -1.844391e+05 -8.334167e+04  3.628065e+02  1.559228e+04  6.335612e+04 
##          1746          1747          1748          1749          1750 
##  3.899312e+04  3.417776e+04  2.847187e+04  1.822162e+04  2.045040e+04 
##          1751          1752          1753          1754          1755 
##  3.974474e+04  2.263730e+04  3.043417e+04 -2.330785e+05 -2.208819e+05 
##          1756          1757          1758          1759          1760 
## -1.881422e+05 -1.053569e+05 -5.867218e+04 -8.400589e+03  3.995835e+04 
##          1761          1762          1763          1764          1765 
##  4.386504e+04  4.868233e+04  4.373872e+04  4.346841e+04  5.462173e+04 
##          1766          1767          1768          1769          1770 
##  4.461338e+04  4.968982e+04  4.403834e+04  3.911198e+04  4.414926e+04 
##          1771          1772          1773          1774          1775 
##  4.593455e+04  4.343096e+04  3.831737e+04  4.102774e+04  4.247111e+04 
##          1776          1777          1778          1779          1780 
##  4.418812e+04  3.996978e+04  5.095660e+04 -2.009934e+05 -1.517196e+05 
##          1781          1782          1783          1784          1785 
## -7.252620e+04 -2.931335e+04  2.882116e+04  3.509112e+04  2.910632e+04 
##          1786          1787          1788          1789          1790 
##  4.317267e+04  1.194845e+04  6.931871e+04  1.378672e+04 -2.242282e+05 
##          1791          1792          1793          1794          1795 
## -1.787705e+05 -3.084952e+04  1.438885e+04  3.891907e+04  5.255027e+04 
##          1796          1797          1798          1799          1800 
##  4.555747e+04  5.537725e+04  4.931346e+04  4.092553e+04 -1.416138e+05 
##          1801          1802          1803          1804          1805 
## -1.053586e+05  2.735615e+04  2.473624e+04 -1.635171e+05 -2.390614e+04 
##          1806          1807          1808          1809          1810 
##  4.245309e+04  4.391117e+04  4.011284e+04  4.470665e+04  4.175035e+04 
##          1811          1812          1813          1814          1815 
##  4.925793e+04  4.162577e+04  3.889797e+04  4.031361e+04  1.021131e+05 
##          1816          1817          1818          1819          1820 
## -2.082051e+05 -2.748861e+04 -2.518150e+03 -2.118309e+04  3.542834e+04 
##          1821          1822          1823          1824          1825 
##  2.259216e+04 -1.574515e+05 -1.378395e+05 -6.425312e+03  4.708219e+04 
##          1826          1827          1828          1829          1830 
##  4.772645e+04  4.697454e+04  4.671413e+04  4.519229e+04  7.116002e+04 
##          1831          1832          1833          1834          1835 
## -2.136059e+05 -1.421109e+05 -1.197903e+04 -2.422894e+04  1.954450e+04 
##          1836          1837          1838          1839          1840 
## -2.023015e+05 -1.678807e+05 -8.903441e+04 -5.331778e+04  1.676469e+04 
##          1841          1842          1843          1844          1845 
##  3.958123e+04  3.780704e+04  4.104351e+04  3.864926e+04  4.324307e+04 
##          1846          1847          1848          1849          1850 
##  3.902784e+04  4.259050e+04  4.303385e+04  4.650839e+04  4.669962e+04 
##          1851          1852          1853          1854          1855 
##  4.623334e+04  4.322470e+04  4.090645e+04  3.915126e+04  4.549231e+04 
##          1856          1857          1858          1859          1860 
##  4.277528e+04  3.809642e+04  3.851753e+04  3.695213e+04  3.949940e+04 
##          1861          1862          1863          1864          1865 
##  4.441718e+04  3.697516e+04  3.969580e+04  4.079841e+04  3.914711e+04 
##          1866          1867          1868          1869          1870 
## -2.051144e+05  1.887226e+04  2.412352e+04  2.668302e+04  6.445548e+04 
##          1871          1872          1873          1874          1875 
##  2.047020e+04 -1.377522e+05 -1.274520e+05 -6.875530e+04 -4.147622e+04 
##          1876          1877          1878          1879          1880 
## -3.273356e+03  4.098864e+04  4.283865e+04  4.734911e+04  3.887456e+04 
##          1881          1882          1883          1884          1885 
##  4.609838e+04  4.726688e+04  4.703094e+04  4.658622e+04  4.840475e+04 
##          1886          1887          1888          1889          1890 
##  4.047393e+04  4.056338e+04 -6.425955e+04 -1.069086e+04  4.146133e+04 
##          1891          1892          1893          1894          1895 
##  4.296431e+04 -2.208805e+05 -6.197341e+04 -1.365559e+05 -2.000506e+05 
##          1896          1897          1898          1899          1900 
## -3.572273e+04  2.180900e+04  4.508627e+04 -2.364324e+05 -1.161408e+05 
##          1901          1902          1903          1904          1905 
## -4.086662e+04  4.002653e+04  4.617299e+04  3.832826e+04  3.989895e+04 
##          1906          1907          1908          1909          1910 
##  4.041949e+04  3.795936e+04  3.977137e+04  4.109339e+04  4.125709e+04 
##          1911          1912          1913          1914          1915 
##  4.187264e+04  4.917793e+04  5.305667e+04  3.766168e+04  3.748718e+04 
##          1916          1917          1918          1919          1920 
##  4.499476e+04  3.972029e+04  3.934611e+04  4.402582e+04  3.833379e+04 
##          1921          1922          1923          1924          1925 
##  3.908656e+04  3.935588e+04  3.913348e+04  4.063247e+04  4.079326e+04 
##          1926          1927          1928          1929          1930 
##  4.100778e+04  3.615486e+04  4.339034e+04  4.119649e+04  4.022670e+04 
##          1931          1932          1933          1934          1935 
##  3.810732e+04  3.630060e+04 -2.111490e+05 -2.042204e+04 -2.100504e+04 
##          1936          1937          1938          1939          1940 
##  1.850096e+04  2.703981e+04 -2.243752e+05 -1.872609e+05 -1.791372e+05 
##          1941          1942          1943          1944          1945 
## -1.555919e+05 -7.841079e+04 -2.020292e+04  4.476498e+04  3.624507e+04 
##          1946          1947          1948          1949          1950 
##  3.973348e+04  3.509088e+04  3.856764e+04  4.977556e+04  3.901603e+04 
##          1951          1952          1953          1954          1955 
##  4.152753e+04  4.210660e+04  4.360232e+04  4.505923e+04  4.802526e+04 
##          1956          1957          1958          1959          1960 
##  4.564556e+04  4.467577e+04  4.311037e+04  4.459072e+04  3.786256e+04 
##          1961          1962          1963          1964          1965 
##  4.298279e+04  4.585404e+04  3.968040e+04  4.020539e+04  3.923559e+04 
##          1966          1967          1968          1969          1970 
##  4.568394e+04  4.326180e+04  4.281708e+04  3.860186e+04  3.948660e+04 
##          1971          1972          1973          1974          1975 
##  4.083497e+04  4.728331e+04  4.278433e+04  4.627100e+04  3.649217e+04 
##          1976          1977          1978          1979          1980 
##  2.437233e+04  4.059882e+04  3.576898e+04  3.433555e+04  3.767044e+04 
##          1981          1982          1983          1984          1985 
##  3.725018e+04  3.758538e+04  5.670773e+04  7.638210e+04  1.095826e+05 
##          1986          1987          1988          1989          1990 
## -8.075156e+04  8.381202e+03  2.847996e+04 -5.354218e+03  5.766983e+04 
##          1991          1992          1993          1994          1995 
##  2.321970e+04 -1.609721e+05 -8.872299e+04  1.650857e+04  5.440646e+04 
##          1996          1997          1998          1999          2000 
##  8.545097e+04 -1.279755e+05 -1.101263e+05 -7.566620e+04 -1.859403e+04 
##          2001          2002          2003          2004          2005 
##  1.686839e+04 -5.439526e+04 -1.626632e+05 -9.642406e+04 -7.609540e+04 
##          2006          2007          2008          2009          2010 
## -1.902070e+04 -1.147074e+04  1.634362e+04  7.056757e+04  8.520932e+04 
##          2011          2012          2013          2014          2015 
## -1.264641e+05 -5.499436e+04 -3.821244e+04  2.353202e+04 -3.984230e+03 
##          2016          2017          2018          2019          2020 
##  2.389012e+04  2.408490e+04  1.853224e+04  2.695450e+04  1.656318e+04 
##          2021          2022          2023          2024          2025 
##  2.195482e+04  4.241381e+03  1.917401e+04  2.448639e+04  1.673104e+03 
##          2026          2027          2028          2029          2030 
## -1.198100e+05 -5.844199e+04  8.085041e+04  4.655049e+04 -1.417484e+05 
##          2031          2032          2033          2034          2035 
## -7.411987e+04  2.726009e+04  7.450912e+03  4.444213e+04  4.573919e+04 
##          2036          2037          2038          2039          2040 
##  6.219906e+04  8.658552e+03  5.225834e+04  3.357151e+04 -1.686466e+05 
##          2041          2042          2043          2044          2045 
## -7.103731e+04  6.198666e+04  2.441293e+04 -1.450740e+05  3.850860e+04 
##          2046          2047          2048          2049          2050 
## -1.018174e+05 -5.405090e+04  5.898910e+04  4.386161e+04  5.284699e+04 
##          2051          2052          2053 
## -3.378014e+04  4.455478e+04  3.427109e+04

We could create a linear regression model and find that the DV is most dependent on V2, V5, V8, V9, V10 and V14 and V15.

To better understand the characteristics of the regression model, we can generate its plots -

plot(fit1)

Understanding the flaws and moving to new dataset

We realise that since one field V2 is missing in the test dataset, and from out chi-square and t-tests, the DV values are strong affected by V2, so our data is incomplete and will not prove to be efficient in terms of prediction.

So, we move on to the analysis and understanding of the new datasets - Training dataset and Validation Dataset.

Understanding the dataset 2

We have been provided with 2 sets of data - training data with 16 columns from V1 to V16 which are independent and a dependent variable Target of 2053 records, as well as test data with 16 columns and the dependent variable Target, it contains columns V1-V16. First step is to read the data into R. The dataset is related to loan approved and we must predict the loan value for the next customer.

The validation dataset contains values of Target also, to check accuracy of our model.

setwd("/Volumes/Untitled/My Money Mantra/week 1")
train <- read.csv('D1 - Training Dataset.csv')
test <- read.csv('D2 - Validation Dataset.csv')

Summarise the data 2

Summarize the dataset Create summary statistics (e.g. mean, standard deviation, median, mode) for the important variables in the dataset using summary() and describe().

summary(train)
##       Sno           Target             V1              V2       
##  Min.   :   1   Min.   :147000   Min.   :721.0   Min.   :25.00  
##  1st Qu.: 514   1st Qu.:359000   1st Qu.:827.0   1st Qu.:34.00  
##  Median :1027   Median :429000   Median :846.0   Median :38.00  
##  Mean   :1027   Mean   :469864   Mean   :841.1   Mean   :39.47  
##  3rd Qu.:1540   3rd Qu.:632000   3rd Qu.:865.0   3rd Qu.:45.00  
##  Max.   :2053   Max.   :750000   Max.   :900.0   Max.   :55.00  
##        V3               V4                 V5              V6          
##  Min.   :0.0000   Min.   :       0   Min.   :0.000   Min.   :       0  
##  1st Qu.:0.0000   1st Qu.:       0   1st Qu.:0.000   1st Qu.:       0  
##  Median :0.0000   Median :       0   Median :0.000   Median :       0  
##  Mean   :0.4715   Mean   : 1437942   Mean   :0.227   Mean   :  540338  
##  3rd Qu.:1.0000   3rd Qu.: 2200000   3rd Qu.:0.000   3rd Qu.:       0  
##  Max.   :4.0000   Max.   :65903173   Max.   :5.000   Max.   :65903173  
##        V7               V8                V9              V10          
##  Min.   :0.0000   Min.   :      0   Min.   :0.0000   Min.   :       0  
##  1st Qu.:0.0000   1st Qu.:      0   1st Qu.:0.0000   1st Qu.:       0  
##  Median :0.0000   Median :      0   Median :0.0000   Median :       0  
##  Mean   :0.1778   Mean   :  70623   Mean   :0.2372   Mean   :  183748  
##  3rd Qu.:0.0000   3rd Qu.:      0   3rd Qu.:0.0000   3rd Qu.:       0  
##  Max.   :4.0000   Max.   :3530000   Max.   :3.0000   Max.   :37000000  
##       V11                V12                 V13         
##  Min.   :0.000000   Min.   :        0   Min.   :0.00000  
##  1st Qu.:0.000000   1st Qu.:        0   1st Qu.:0.00000  
##  Median :0.000000   Median :        0   Median :0.00000  
##  Mean   :0.004384   Mean   :   106259   Mean   :0.00341  
##  3rd Qu.:0.000000   3rd Qu.:        0   3rd Qu.:0.00000  
##  Max.   :2.000000   Max.   :212300000   Max.   :3.00000  
##       V14               V15              V16         
##  Min.   :      0   Min.   : 0.000   Min.   :      0  
##  1st Qu.:      0   1st Qu.: 1.000   1st Qu.:      0  
##  Median :      0   Median : 1.000   Median :      0  
##  Mean   :   2319   Mean   : 1.451   Mean   :  67874  
##  3rd Qu.:      0   3rd Qu.: 2.000   3rd Qu.: 100000  
##  Max.   :1400000   Max.   :15.000   Max.   :1133261
library(psych)
describe(train)
##        vars    n       mean         sd median   trimmed       mad    min
## Sno       1 2053    1027.00     592.79   1027   1027.00    760.57      1
## Target    2 2053  469863.61  183152.97 429000 471171.03 169016.40 147000
## V1        3 2053     841.08      32.13    846    845.01     28.17    721
## V2        4 2053      39.47       7.21     38     39.01      7.41     25
## V3        5 2053       0.47       0.68      0      0.35      0.00      0
## V4        6 2053 1437942.14 3286544.02      0 809927.18      0.00      0
## V5        7 2053       0.23       0.55      0      0.10      0.00      0
## V6        8 2053  540338.13 2410844.36      0 101522.75      0.00      0
## V7        9 2053       0.18       0.44      0      0.07      0.00      0
## V8       10 2053   70622.70  260862.51      0   5733.93      0.00      0
## V9       11 2053       0.24       0.51      0      0.13      0.00      0
## V10      12 2053  183747.80  970668.58      0  48248.35      0.00      0
## V11      13 2053       0.00       0.08      0      0.00      0.00      0
## V12      14 2053  106259.13 4685898.74      0      0.00      0.00      0
## V13      15 2053       0.00       0.08      0      0.00      0.00      0
## V14      16 2053    2318.56   50634.20      0      0.00      0.00      0
## V15      17 2053       1.45       0.78      1      1.44      1.48      0
## V16      18 2053   67874.32  118923.12      0  41381.40      0.00      0
##              max     range  skew kurtosis        se
## Sno         2053      2052  0.00    -1.20     13.08
## Target    750000    603000  0.24    -0.93   4042.22
## V1           900       179 -1.21     1.62      0.71
## V2            55        30  0.48    -0.76      0.16
## V3             4         4  1.49     2.51      0.01
## V4      65903173  65903173  7.78   104.94  72534.56
## V5             5         5  3.14    13.50      0.01
## V6      65903173  65903173 15.17   335.81  53207.73
## V7             4         4  2.82     9.61      0.01
## V8       3530000   3530000  6.27    53.31   5757.28
## V9             3         3  2.24     5.00      0.01
## V10     37000000  37000000 27.85  1013.96  21422.81
## V11            2         2 20.21   444.30      0.00
## V12    212300000 212300000 45.23  2045.19 103418.55
## V13            3         3 29.90  1027.23      0.00
## V14      1400000   1400000 22.99   542.50   1117.51
## V15           15        15  3.33    48.07      0.02
## V16      1133261   1133261  3.15    14.17   2624.65
summary(test)
##       Sno             Target             V1              V2       
##  Min.   :   1.0   Min.   :147000   Min.   :720.0   Min.   :25.00  
##  1st Qu.: 513.8   1st Qu.:359000   1st Qu.:826.0   1st Qu.:34.00  
##  Median :1026.5   Median :429000   Median :846.0   Median :38.00  
##  Mean   :1026.5   Mean   :469872   Mean   :840.8   Mean   :39.64  
##  3rd Qu.:1539.2   3rd Qu.:631750   3rd Qu.:865.0   3rd Qu.:45.00  
##  Max.   :2052.0   Max.   :750000   Max.   :898.0   Max.   :55.00  
##        V3               V4                 V5               V6          
##  Min.   :0.0000   Min.   :       0   Min.   :0.0000   Min.   :       0  
##  1st Qu.:0.0000   1st Qu.:       0   1st Qu.:0.0000   1st Qu.:       0  
##  Median :0.0000   Median :       0   Median :0.0000   Median :       0  
##  Mean   :0.4669   Mean   : 1384357   Mean   :0.2271   Mean   :  488915  
##  3rd Qu.:1.0000   3rd Qu.: 2000000   3rd Qu.:0.0000   3rd Qu.:       0  
##  Max.   :7.0000   Max.   :49495493   Max.   :5.0000   Max.   :30200000  
##        V7               V8                V9              V10         
##  Min.   :0.0000   Min.   :      0   Min.   :0.0000   Min.   :      0  
##  1st Qu.:0.0000   1st Qu.:      0   1st Qu.:0.0000   1st Qu.:      0  
##  Median :0.0000   Median :      0   Median :0.0000   Median :      0  
##  Mean   :0.1842   Mean   :  68918   Mean   :0.2485   Mean   : 152218  
##  3rd Qu.:0.0000   3rd Qu.:      0   3rd Qu.:0.0000   3rd Qu.:      0  
##  Max.   :4.0000   Max.   :3280000   Max.   :3.0000   Max.   :4750000  
##       V11                V12               V13                V14         
##  Min.   :0.000000   Min.   :      0   Min.   :0.000000   Min.   :      0  
##  1st Qu.:0.000000   1st Qu.:      0   1st Qu.:0.000000   1st Qu.:      0  
##  Median :0.000000   Median :      0   Median :0.000000   Median :      0  
##  Mean   :0.004873   Mean   :   6429   Mean   :0.002437   Mean   :   1462  
##  3rd Qu.:0.000000   3rd Qu.:      0   3rd Qu.:0.000000   3rd Qu.:      0  
##  Max.   :4.000000   Max.   :5560000   Max.   :3.000000   Max.   :2000000  
##       V15              V16         
##  Min.   : 0.000   Min.   :      0  
##  1st Qu.: 1.000   1st Qu.:      0  
##  Median : 1.000   Median :      0  
##  Mean   : 1.429   Mean   :  70734  
##  3rd Qu.: 2.000   3rd Qu.: 100250  
##  Max.   :10.000   Max.   :1095000
describe(test)
##        vars    n       mean         sd   median   trimmed       mad    min
## Sno       1 2052    1026.50     592.51   1026.5   1026.50    760.57      1
## Target    2 2052  469871.83  183075.55 429000.0 471159.56 169016.40 147000
## V1        3 2052     840.84      31.77    846.0    844.66     28.17    720
## V2        4 2052      39.64       7.17     38.0     39.24      7.41     25
## V3        5 2052       0.47       0.70      0.0      0.34      0.00      0
## V4        6 2052 1384356.67 2966890.18      0.0 750438.05      0.00      0
## V5        7 2052       0.23       0.58      0.0      0.09      0.00      0
## V6        8 2052  488915.05 1668707.79      0.0  97470.86      0.00      0
## V7        9 2052       0.18       0.47      0.0      0.07      0.00      0
## V8       10 2052   68918.06  244940.05      0.0   5823.19      0.00      0
## V9       11 2052       0.25       0.54      0.0      0.13      0.00      0
## V10      12 2052  152217.92  410112.31      0.0  51238.92      0.00      0
## V11      13 2052       0.00       0.10      0.0      0.00      0.00      0
## V12      14 2052    6428.56  168876.55      0.0      0.00      0.00      0
## V13      15 2052       0.00       0.08      0.0      0.00      0.00      0
## V14      16 2052    1461.99   49352.78      0.0      0.00      0.00      0
## V15      17 2052       1.43       0.74      1.0      1.42      0.00      0
## V16      18 2052   70733.52  121828.98      0.0  43620.97      0.00      0
##             max    range  skew kurtosis       se
## Sno        2052     2051  0.00    -1.20    13.08
## Target   750000   603000  0.24    -0.93  4041.49
## V1          898      178 -1.16     1.40     0.70
## V2           55       30  0.42    -0.84     0.16
## V3            7        7  1.93     7.05     0.02
## V4     49495493 49495493  5.76    60.36 65495.70
## V5            5        5  3.30    14.10     0.01
## V6     30200000 30200000  7.52    88.14 36837.62
## V7            4        4  2.84     9.34     0.01
## V8      3280000  3280000  5.95    49.77  5407.18
## V9            3        3  2.37     5.98     0.01
## V10     4750000  4750000  4.56    29.02  9053.45
## V11           4        4 30.67  1105.85     0.00
## V12     5560000  5560000 30.28   942.53  3728.04
## V13           3        3 33.76  1171.70     0.00
## V14     2000000  2000000 36.40  1389.13  1089.49
## V15          10       10  1.57    12.72     0.02
## V16     1095000  1095000  3.01    12.93  2689.44

Looking at the dependent variable in new dataset

We can now study the dependent variable in the training dataset and try to understand some of its properties, so that we can figure out what the data is trying to hint at.

summary(train$Target)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  147000  359000  429000  469864  632000  750000

Generating some plots for new dataset

The next step into data analysis is to generate some plots and find out relations between the fields. Since we are concerned with the dependent variable and we do know that the rest of the variables are independent, we can compare Target with V1-V16.

hist(train$Target, breaks=10,col="yellow",xlab="Target", main="Target")

plot(train$Target,main="Target")

boxplot(train$Target, horizontal =TRUE, main="Boxplot of Target" ,col="lightblue")

We can now generate some scatterplots to understand how the variables are co-related pair wise.

library(car)
scatterplot(train$Target ~ train$V1,
            spread=FALSE, smoother.args=list(lty=2),
            main="Scatter plot of Target vs V1",
            xlab="Target",
            ylab="V1")

scatterplot(train$Target ~ train$V3,
            spread=FALSE, smoother.args=list(lty=2),
            main="Scatter plot of Target vs V3",
            xlab="Target",
            ylab="V3")

scatterplot(train$Target ~ train$V4,
            spread=FALSE, smoother.args=list(lty=2),
            main="Scatter plot of Target vs V4",
            xlab="Target",
            ylab="V4")

scatterplot(train$Target ~ train$V8,
            spread=FALSE, smoother.args=list(lty=2),
            main="Scatter plot of Target vs V8",
            xlab="Target",
            ylab="V8")

scatterplot(train$Target ~ train$V12,
            spread=FALSE, smoother.args=list(lty=2),
            main="Scatter plot of Target vs V12",
            xlab="Target",
            ylab="V12")

Each graph varies and there does not seem to be a common correlation between the TARGET and the other independent variables.

We now generate a scatterplot matrix to see the relations with all the fields.

scatterplotMatrix(train, spread=FALSE, smoother.args=list(lty=2), main="Scatter Plot Matrix")

CORRGRAM (new dataset)

The next step is to draw a corrgram and create a variance-covariance matrix for the fields.

library(corrgram)
corr.test(train)
## Call:corr.test(x = train)
## Correlation matrix 
##          Sno Target    V1    V2    V3    V4    V5    V6    V7    V8    V9
## Sno     1.00   0.96  0.03  0.06  0.35  0.38  0.30  0.23 -0.04  0.08  0.08
## Target  0.96   1.00  0.02  0.08  0.39  0.42  0.33  0.25 -0.03  0.10  0.10
## V1      0.03   0.02  1.00  0.01  0.03  0.00 -0.04  0.00 -0.18 -0.16 -0.23
## V2      0.06   0.08  0.01  1.00  0.01  0.05  0.10  0.07 -0.09 -0.05  0.14
## V3      0.35   0.39  0.03  0.01  1.00  0.57  0.19  0.09 -0.01 -0.06 -0.02
## V4      0.38   0.42  0.00  0.05  0.57  1.00  0.26  0.55 -0.06 -0.05  0.03
## V5      0.30   0.33 -0.04  0.10  0.19  0.26  1.00  0.51 -0.02 -0.02  0.04
## V6      0.23   0.25  0.00  0.07  0.09  0.55  0.51  1.00 -0.04 -0.03  0.05
## V7     -0.04  -0.03 -0.18 -0.09 -0.01 -0.06 -0.02 -0.04  1.00  0.72 -0.02
## V8      0.08   0.10 -0.16 -0.05 -0.06 -0.05 -0.02 -0.03  0.72  1.00 -0.01
## V9      0.08   0.10 -0.23  0.14 -0.02  0.03  0.04  0.05 -0.02 -0.01  1.00
## V10     0.10   0.12 -0.13  0.10 -0.02  0.03  0.02  0.06 -0.03 -0.02  0.45
## V11    -0.03  -0.03 -0.10  0.06  0.07  0.04  0.04  0.02  0.02  0.04  0.02
## V12    -0.01  -0.01  0.02  0.04 -0.01 -0.01 -0.01  0.00 -0.01 -0.01 -0.01
## V13    -0.01  -0.02 -0.10  0.06  0.04  0.07  0.05  0.02  0.05  0.09  0.05
## V14     0.00  -0.01 -0.09  0.06  0.02  0.06  0.02  0.01  0.04  0.06  0.04
## V15    -0.02  -0.02 -0.16 -0.03 -0.06  0.00  0.04  0.02  0.14  0.13 -0.02
## V16     0.05   0.07 -0.08  0.09  0.00  0.04  0.11  0.10  0.02  0.03  0.03
##          V10   V11   V12   V13   V14   V15   V16
## Sno     0.10 -0.03 -0.01 -0.01  0.00 -0.02  0.05
## Target  0.12 -0.03 -0.01 -0.02 -0.01 -0.02  0.07
## V1     -0.13 -0.10  0.02 -0.10 -0.09 -0.16 -0.08
## V2      0.10  0.06  0.04  0.06  0.06 -0.03  0.09
## V3     -0.02  0.07 -0.01  0.04  0.02 -0.06  0.00
## V4      0.03  0.04 -0.01  0.07  0.06  0.00  0.04
## V5      0.02  0.04 -0.01  0.05  0.02  0.04  0.11
## V6      0.06  0.02  0.00  0.02  0.01  0.02  0.10
## V7     -0.03  0.02 -0.01  0.05  0.04  0.14  0.02
## V8     -0.02  0.04 -0.01  0.09  0.06  0.13  0.03
## V9      0.45  0.02 -0.01  0.05  0.04 -0.02  0.03
## V10     1.00  0.04  0.00  0.08  0.07  0.01  0.02
## V11     0.04  1.00  0.29  0.54  0.39  0.19  0.06
## V12     0.00  0.29  1.00  0.01  0.01 -0.01 -0.01
## V13     0.08  0.54  0.01  1.00  0.85  0.37  0.11
## V14     0.07  0.39  0.01  0.85  1.00  0.22  0.07
## V15     0.01  0.19 -0.01  0.37  0.22  1.00  0.30
## V16     0.02  0.06 -0.01  0.11  0.07  0.30  1.00
## Sample Size 
## [1] 2053
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##         Sno Target   V1   V2   V3   V4   V5   V6   V7   V8   V9  V10  V11
## Sno    0.00   0.00 1.00 0.89 0.00 0.00 0.00 0.00 1.00 0.04 0.05 0.00 1.00
## Target 0.00   0.00 1.00 0.03 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00
## V1     0.14   0.27 0.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00
## V2     0.01   0.00 0.61 0.00 1.00 1.00 0.00 0.18 0.01 1.00 0.00 0.00 0.57
## V3     0.00   0.00 0.14 0.65 0.00 0.00 0.00 0.00 1.00 0.84 1.00 1.00 0.14
## V4     0.00   0.00 1.00 0.02 0.00 0.00 0.00 0.00 0.81 1.00 1.00 1.00 1.00
## V5     0.00   0.00 0.09 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00
## V6     0.00   0.00 0.92 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.44 1.00
## V7     0.05   0.25 0.00 0.00 0.66 0.01 0.37 0.07 0.00 0.00 1.00 1.00 1.00
## V8     0.00   0.00 0.00 0.04 0.01 0.03 0.48 0.15 0.00 0.00 1.00 1.00 1.00
## V9     0.00   0.00 0.00 0.00 0.32 0.20 0.09 0.02 0.46 0.54 0.00 0.00 1.00
## V10    0.00   0.00 0.00 0.00 0.34 0.16 0.30 0.00 0.17 0.42 0.00 0.00 1.00
## V11    0.12   0.22 0.00 0.01 0.00 0.05 0.04 0.36 0.38 0.09 0.31 0.05 0.00
## V12    0.73   0.81 0.41 0.06 0.52 0.69 0.71 0.84 0.70 0.81 0.66 0.88 0.00
## V13    0.57   0.41 0.00 0.01 0.05 0.00 0.03 0.36 0.02 0.00 0.02 0.00 0.00
## V14    0.98   0.59 0.00 0.00 0.43 0.01 0.36 0.75 0.06 0.01 0.06 0.00 0.00
## V15    0.28   0.50 0.00 0.22 0.01 0.97 0.04 0.38 0.00 0.00 0.42 0.52 0.00
## V16    0.02   0.00 0.00 0.00 0.87 0.07 0.00 0.00 0.47 0.17 0.23 0.27 0.00
##         V12  V13  V14  V15  V16
## Sno    1.00 1.00 1.00 1.00 1.00
## Target 1.00 1.00 1.00 1.00 0.11
## V1     1.00 0.00 0.00 0.00 0.04
## V2     1.00 0.52 0.31 1.00 0.00
## V3     1.00 1.00 1.00 0.77 1.00
## V4     1.00 0.20 0.48 1.00 1.00
## V5     1.00 1.00 1.00 1.00 0.00
## V6     1.00 1.00 1.00 1.00 0.00
## V7     1.00 1.00 1.00 0.00 1.00
## V8     1.00 0.00 0.96 0.00 1.00
## V9     1.00 1.00 1.00 1.00 1.00
## V10    1.00 0.05 0.25 1.00 1.00
## V11    0.00 0.00 0.00 0.00 0.45
## V12    0.00 1.00 1.00 1.00 1.00
## V13    0.69 0.00 0.00 0.00 0.00
## V14    0.81 0.00 0.00 0.00 0.10
## V15    0.69 0.00 0.00 0.00 0.00
## V16    0.61 0.00 0.00 0.00 0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option

We can also understand the correlations in the test dataset as -

library(corrgram)
corr.test(test)
## Call:corr.test(x = test)
## Correlation matrix 
##          Sno Target    V1    V2    V3    V4    V5    V6    V7    V8    V9
## Sno     1.00   0.96  0.06  0.03  0.36  0.41  0.29  0.28 -0.04  0.06  0.06
## Target  0.96   1.00  0.04  0.06  0.41  0.45  0.32  0.31 -0.02  0.08  0.09
## V1      0.06   0.04  1.00  0.04  0.05  0.01  0.02  0.00 -0.16 -0.11 -0.26
## V2      0.03   0.06  0.04  1.00  0.01  0.05  0.09  0.11 -0.11 -0.06  0.16
## V3      0.36   0.41  0.05  0.01  1.00  0.66  0.21  0.16 -0.03 -0.05 -0.01
## V4      0.41   0.45  0.01  0.05  0.66  1.00  0.25  0.45 -0.04  0.00  0.02
## V5      0.29   0.32  0.02  0.09  0.21  0.25  1.00  0.68 -0.03 -0.02 -0.01
## V6      0.28   0.31  0.00  0.11  0.16  0.45  0.68  1.00 -0.02  0.03  0.00
## V7     -0.04  -0.02 -0.16 -0.11 -0.03 -0.04 -0.03 -0.02  1.00  0.71 -0.02
## V8      0.06   0.08 -0.11 -0.06 -0.05  0.00 -0.02  0.03  0.71  1.00 -0.02
## V9      0.06   0.09 -0.26  0.16 -0.01  0.02 -0.01  0.00 -0.02 -0.02  1.00
## V10     0.13   0.17 -0.19  0.17  0.00  0.09  0.00  0.09 -0.05 -0.04  0.80
## V11    -0.02  -0.02 -0.08  0.05  0.03  0.13  0.03  0.08 -0.01  0.02 -0.01
## V12    -0.01  -0.01 -0.08  0.05  0.05  0.28  0.06  0.26  0.02  0.08 -0.02
## V13    -0.02  -0.01 -0.05  0.03  0.00  0.03  0.04  0.03 -0.01 -0.01 -0.01
## V14    -0.02  -0.01 -0.05  0.03  0.01  0.05  0.04  0.02 -0.01 -0.01 -0.01
## V15    -0.02  -0.02 -0.20 -0.09 -0.06  0.04  0.04  0.08  0.16  0.13 -0.03
## V16     0.08   0.09 -0.10  0.06  0.02  0.10  0.09  0.09  0.01  0.02 -0.03
##          V10   V11   V12   V13   V14   V15   V16
## Sno     0.13 -0.02 -0.01 -0.02 -0.02 -0.02  0.08
## Target  0.17 -0.02 -0.01 -0.01 -0.01 -0.02  0.09
## V1     -0.19 -0.08 -0.08 -0.05 -0.05 -0.20 -0.10
## V2      0.17  0.05  0.05  0.03  0.03 -0.09  0.06
## V3      0.00  0.03  0.05  0.00  0.01 -0.06  0.02
## V4      0.09  0.13  0.28  0.03  0.05  0.04  0.10
## V5      0.00  0.03  0.06  0.04  0.04  0.04  0.09
## V6      0.09  0.08  0.26  0.03  0.02  0.08  0.09
## V7     -0.05 -0.01  0.02 -0.01 -0.01  0.16  0.01
## V8     -0.04  0.02  0.08 -0.01 -0.01  0.13  0.02
## V9      0.80 -0.01 -0.02 -0.01 -0.01 -0.03 -0.03
## V10     1.00 -0.01 -0.01 -0.01 -0.01 -0.02  0.01
## V11    -0.01  1.00  0.83  0.47  0.76  0.02  0.00
## V12    -0.01  0.83  1.00  0.40  0.65  0.08  0.01
## V13    -0.01  0.47  0.40  1.00  0.87 -0.02  0.00
## V14    -0.01  0.76  0.65  0.87  1.00 -0.02 -0.01
## V15    -0.02  0.02  0.08 -0.02 -0.02  1.00  0.31
## V16     0.01  0.00  0.01  0.00 -0.01  0.31  1.00
## Sample Size 
## [1] 2052
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##         Sno Target   V1   V2   V3   V4   V5   V6   V7   V8   V9  V10  V11
## Sno    0.00   0.00 0.98 1.00 0.00 0.00 0.00 0.00 1.00 0.33 0.37 0.00 1.00
## Target 0.00   0.00 1.00 1.00 0.00 0.00 0.00 0.00 1.00 0.02 0.00 0.00 1.00
## V1     0.01   0.05 0.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.02
## V2     0.15   0.01 0.10 0.00 1.00 1.00 0.00 0.00 0.00 0.69 0.00 0.00 1.00
## V3     0.00   0.00 0.02 0.71 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00
## V4     0.00   0.00 0.57 0.02 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00
## V5     0.00   0.00 0.31 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00
## V6     0.00   0.00 0.96 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.01 0.03
## V7     0.09   0.33 0.00 0.00 0.15 0.07 0.22 0.28 0.00 0.00 1.00 1.00 1.00
## V8     0.00   0.00 0.00 0.01 0.02 0.91 0.31 0.23 0.00 0.00 1.00 1.00 1.00
## V9     0.00   0.00 0.00 0.00 0.77 0.27 0.58 0.88 0.33 0.34 0.00 0.00 1.00
## V10    0.00   0.00 0.00 0.00 0.96 0.00 0.93 0.00 0.02 0.08 0.00 0.00 1.00
## V11    0.31   0.43 0.00 0.03 0.19 0.00 0.17 0.00 0.70 0.49 0.55 0.59 0.00
## V12    0.56   0.68 0.00 0.02 0.03 0.00 0.00 0.00 0.47 0.00 0.44 0.53 0.00
## V13    0.48   0.76 0.01 0.23 0.89 0.23 0.06 0.22 0.58 0.70 0.52 0.61 0.00
## V14    0.49   0.76 0.03 0.13 0.70 0.02 0.07 0.45 0.60 0.71 0.53 0.62 0.00
## V15    0.34   0.27 0.00 0.00 0.01 0.09 0.06 0.00 0.00 0.00 0.16 0.31 0.44
## V16    0.00   0.00 0.00 0.01 0.32 0.00 0.00 0.00 0.72 0.50 0.24 0.56 0.90
##         V12  V13  V14  V15  V16
## Sno    1.00 1.00 1.00 1.00 0.03
## Target 1.00 1.00 1.00 1.00 0.01
## V1     0.01 1.00 1.00 0.00 0.00
## V2     1.00 1.00 1.00 0.01 0.49
## V3     1.00 1.00 1.00 0.91 1.00
## V4     0.00 1.00 1.00 1.00 0.00
## V5     0.41 1.00 1.00 1.00 0.00
## V6     0.00 1.00 1.00 0.01 0.00
## V7     1.00 1.00 1.00 0.00 1.00
## V8     0.05 1.00 1.00 0.00 1.00
## V9     1.00 1.00 1.00 1.00 1.00
## V10    1.00 1.00 1.00 1.00 1.00
## V11    0.00 0.00 0.00 1.00 1.00
## V12    0.00 0.00 0.00 0.05 1.00
## V13    0.00 0.00 0.00 1.00 1.00
## V14    0.00 0.00 0.00 1.00 1.00
## V15    0.00 0.42 0.44 0.00 0.00
## V16    0.70 0.90 0.68 0.00 0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option

These tables enable us to understand relations between the independent variables. We learn that the Target is most related to V3,V4,V5 and V6 since their correlation values are closer to 1.

We get covariance and correlation matrices as -

cov(train)
##                  Sno        Target            V1            V2
## Sno     3.514052e+05  1.041758e+08  6.236126e+02  2.415200e+02
## Target  1.041758e+08  3.354501e+10  1.419672e+05  1.063175e+05
## V1      6.236126e+02  1.419672e+05  1.032579e+03  2.574846e+00
## V2      2.415200e+02  1.063175e+05  2.574846e+00  5.202697e+01
## V3      1.394990e+02  4.787477e+04  7.028551e-01  4.896153e-02
## V4      7.384006e+08  2.501741e+11  1.189264e+03  1.240501e+06
## V5      9.787622e+01  3.282434e+04 -6.612605e-01  3.914165e-01
## V6      3.271985e+08  1.103243e+11 -1.786275e+05  1.195588e+06
## V7     -1.137086e+01 -2.068333e+03 -2.571974e+00 -2.872262e-01
## V8      1.213925e+07  4.929926e+09 -1.338522e+06 -8.473785e+04
## V9      2.315936e+01  9.477787e+03 -3.764432e+00  5.264746e-01
## V10     6.014017e+07  2.166705e+10 -3.994135e+06  6.855822e+05
## V11    -1.629142e+00 -3.946260e+02 -2.625400e-01  3.449025e-02
## V12    -2.138991e+07 -4.513383e+09  2.766947e+06  1.420841e+06
## V13    -5.906433e-01 -2.631800e+02 -2.532015e-01  3.494791e-02
## V14     1.614035e+04 -1.114965e+08 -1.467189e+05  2.368660e+04
## V15    -1.093470e+01 -2.138746e+03 -4.057663e+00 -1.509793e-01
## V16     3.748057e+06  1.563396e+09 -2.964646e+05  7.736039e+04
##                   V3            V4            V5            V6
## Sno     1.394990e+02  7.384006e+08  9.787622e+01  3.271985e+08
## Target  4.787477e+04  2.501741e+11  3.282434e+04  1.103243e+11
## V1      7.028551e-01  1.189264e+03 -6.612605e-01 -1.786275e+05
## V2      4.896153e-02  1.240501e+06  3.914165e-01  1.195588e+06
## V3      4.598358e-01  1.277147e+06  7.128588e-02  1.498863e+05
## V4      1.277147e+06  1.080137e+13  4.614768e+05  4.374216e+12
## V5      7.128588e-02  4.614768e+05  3.003046e-01  6.782443e+05
## V6      1.498863e+05  4.374216e+12  6.782443e+05  5.812171e+12
## V7     -2.972401e-03 -8.394684e+04 -4.799946e-03 -4.325197e+04
## V8     -1.007801e+04 -4.134346e+10 -2.222573e+03 -2.013280e+10
## V9     -7.613543e-03  4.708364e+04  1.045729e-02  6.392140e+04
## V10    -1.381597e+04  9.955212e+10  1.210393e+04  1.457400e+11
## V11     3.779948e-03  1.136948e+04  1.928429e-03  3.863039e+03
## V12    -4.528452e+04 -1.360938e+11 -2.099257e+04 -5.084716e+10
## V13     2.290187e-03  1.772669e+04  2.149662e-03  3.851186e+03
## V14     6.021616e+02  1.023519e+10  5.650838e+02  8.725100e+08
## V15    -3.051352e-02  1.938689e+03  1.891422e-02  3.613014e+04
## V16    -3.020659e+02  1.559843e+10  7.000141e+03  2.809876e+10
##                   V7            V8            V9           V10
## Sno    -1.137086e+01  1.213925e+07  2.315936e+01  6.014017e+07
## Target -2.068333e+03  4.929926e+09  9.477787e+03  2.166705e+10
## V1     -2.571974e+00 -1.338522e+06 -3.764432e+00 -3.994135e+06
## V2     -2.872262e-01 -8.473785e+04  5.264746e-01  6.855822e+05
## V3     -2.972401e-03 -1.007801e+04 -7.613543e-03 -1.381597e+04
## V4     -8.394684e+04 -4.134346e+10  4.708364e+04  9.955212e+10
## V5     -4.799946e-03 -2.222573e+03  1.045729e-02  1.210393e+04
## V6     -4.325197e+04 -2.013280e+10  6.392140e+04  1.457400e+11
## V7      1.979080e-01  8.376531e+04 -3.695443e-03 -1.320706e+04
## V8      8.376531e+04  6.804925e+10 -1.783262e+03 -4.462887e+09
## V9     -3.695443e-03 -1.783262e+03  2.609536e-01  2.245008e+05
## V10    -1.320706e+04 -4.462887e+09  2.245008e+05  9.421975e+11
## V11     6.822137e-04  7.682240e+02  9.089062e-04  3.308362e+03
## V12    -1.772153e+04 -6.367028e+09 -2.342992e+04 -1.550144e+10
## V13     1.830156e-03  1.878967e+03  2.114768e-03  5.905023e+03
## V14     9.326151e+02  7.377368e+08  1.087165e+03  3.261184e+09
## V15     4.696284e-02  2.729794e+04 -7.144254e-03  1.066442e+04
## V16     8.450299e+02  9.498551e+08  1.606986e+03  2.789389e+09
##                  V11           V12           V13           V14
## Sno    -1.629142e+00 -2.138991e+07 -5.906433e-01  1.614035e+04
## Target -3.946260e+02 -4.513383e+09 -2.631800e+02 -1.114965e+08
## V1     -2.625400e-01  2.766947e+06 -2.532015e-01 -1.467189e+05
## V2      3.449025e-02  1.420841e+06  3.494791e-02  2.368660e+04
## V3      3.779948e-03 -4.528452e+04  2.290187e-03  6.021616e+02
## V4      1.136948e+04 -1.360938e+11  1.772669e+04  1.023519e+10
## V5      1.928429e-03 -2.099257e+04  2.149662e-03  5.650838e+02
## V6      3.863039e+03 -5.084716e+10  3.851186e+03  8.725100e+08
## V7      6.822137e-04 -1.772153e+04  1.830156e-03  9.326151e+02
## V8      7.682240e+02 -6.367028e+09  1.878967e+03  7.377368e+08
## V9      9.089062e-04 -2.342992e+04  2.114768e-03  1.087165e+03
## V10     3.308362e+03 -1.550144e+10  5.905023e+03  3.261184e+09
## V11     6.316055e-03  1.077040e+05  3.396351e-03  1.568778e+03
## V12     1.077040e+05  2.195765e+13  3.248629e+03  1.239087e+09
## V13     3.396351e-03  3.248629e+03  6.323651e-03  3.403397e+03
## V14     1.568778e+03  1.239087e+09  3.403397e+03  2.563822e+09
## V15     1.166695e-02 -3.195222e+04  2.282781e-02  8.836752e+03
## V16     5.863212e+02 -6.310535e+09  1.065244e+03  4.362370e+08
##                  V15           V16
## Sno    -1.093470e+01  3.748057e+06
## Target -2.138746e+03  1.563396e+09
## V1     -4.057663e+00 -2.964646e+05
## V2     -1.509793e-01  7.736039e+04
## V3     -3.051352e-02 -3.020659e+02
## V4      1.938689e+03  1.559843e+10
## V5      1.891422e-02  7.000141e+03
## V6      3.613014e+04  2.809876e+10
## V7      4.696284e-02  8.450299e+02
## V8      2.729794e+04  9.498551e+08
## V9     -7.144254e-03  1.606986e+03
## V10     1.066442e+04  2.789389e+09
## V11     1.166695e-02  5.863212e+02
## V12    -3.195222e+04 -6.310535e+09
## V13     2.282781e-02  1.065244e+03
## V14     8.836752e+03  4.362370e+08
## V15     6.054241e-01  2.797963e+04
## V16     2.797963e+04  1.414271e+10
cor(train)
##                  Sno       Target            V1          V2           V3
## Sno     1.0000000000  0.959508202  3.273778e-02  0.05648521  0.347028957
## Target  0.9595082019  1.000000000  2.412196e-02  0.08047787  0.385470662
## V1      0.0327377794  0.024121961  1.000000e+00  0.01110901  0.032255430
## V2      0.0564852060  0.080477867  1.110901e-02  1.00000000  0.010010122
## V3      0.3470289570  0.385470662  3.225543e-02  0.01001012  1.000000000
## V4      0.3790081451  0.415612870  1.126101e-05  0.05232911  0.573060037
## V5      0.3012951344  0.327040187 -3.755173e-02  0.09902476  0.191832024
## V6      0.2289486397  0.249854972 -2.305779e-03  0.06875401  0.091683544
## V7     -0.0431178908 -0.025384864 -1.799175e-01 -0.08951136 -0.009853133
## V8      0.0785011695  0.103184576 -1.596807e-01 -0.04503514 -0.056972027
## V9      0.0764787435  0.101300441 -2.293275e-01  0.14288330 -0.021978789
## V10     0.1045176448  0.121875089 -1.280531e-01  0.09792065 -0.020989831
## V11    -0.0345805571 -0.027111202 -1.028042e-01  0.06016710  0.070139314
## V12    -0.0077003760 -0.005258905  1.837580e-02  0.04203764 -0.014251334
## V13    -0.0125296008 -0.018069866 -9.908791e-02  0.06092884  0.042470331
## V14     0.0005377308 -0.012022735 -9.017383e-02  0.06485516  0.017537501
## V15    -0.0237067961 -0.015007744 -1.622873e-01 -0.02690130 -0.057831043
## V16     0.0531662225  0.071777574 -7.757914e-02  0.09018578 -0.003745708
##                   V4           V5           V6           V7           V8
## Sno     3.790081e-01  0.301295134  0.228948640 -0.043117891  0.078501169
## Target  4.156129e-01  0.327040187  0.249854972 -0.025384864  0.103184576
## V1      1.126101e-05 -0.037551734 -0.002305779 -0.179917480 -0.159680667
## V2      5.232911e-02  0.099024762  0.068754006 -0.089511362 -0.045035137
## V3      5.730600e-01  0.191832024  0.091683544 -0.009853133 -0.056972027
## V4      1.000000e+00  0.256229680  0.552066738 -0.057416044 -0.048223159
## V5      2.562297e-01  1.000000000  0.513376515 -0.019689001 -0.015547599
## V6      5.520667e-01  0.513376515  1.000000000 -0.040327847 -0.032012772
## V7     -5.741604e-02 -0.019689001 -0.040327847  1.000000000  0.721806676
## V8     -4.822316e-02 -0.015547599 -0.032012772  0.721806676  1.000000000
## V9      2.804458e-02  0.037355656  0.051903351 -0.016261223 -0.013382026
## V10     3.120614e-02  0.022754884  0.062278587 -0.030584644 -0.017625168
## V11     4.352895e-02  0.044279189  0.020162157  0.019295936  0.037055549
## V12    -8.837020e-03 -0.008175075 -0.004500954 -0.008501131 -0.005208734
## V13     6.782724e-02  0.049329323  0.020088214  0.051733572  0.090578185
## V14     6.150529e-02  0.020365162  0.007147551  0.041402526  0.055852911
## V15     7.581215e-04  0.044358579  0.019260636  0.135672831  0.134489477
## V16     3.990939e-02  0.107413656  0.098005781  0.015972545  0.030618179
##                  V9          V10         V11          V12          V13
## Sno     0.076478743  0.104517645 -0.03458056 -0.007700376 -0.012529601
## Target  0.101300441  0.121875089 -0.02711120 -0.005258905 -0.018069866
## V1     -0.229327544 -0.128053139 -0.10280422  0.018375803 -0.099087914
## V2      0.142883297  0.097920647  0.06016710  0.042037645  0.060928842
## V3     -0.021978789 -0.020989831  0.07013931 -0.014251334  0.042470331
## V4      0.028044578  0.031206142  0.04352895 -0.008837020  0.067827240
## V5      0.037355656  0.022754884  0.04427919 -0.008175075  0.049329323
## V6      0.051903351  0.062278587  0.02016216 -0.004500954  0.020088214
## V7     -0.016261223 -0.030584644  0.01929594 -0.008501131  0.051733572
## V8     -0.013382026 -0.017625168  0.03705555 -0.005208734  0.090578185
## V9      1.000000000  0.452757122  0.02238795 -0.009788052  0.052059144
## V10     0.452757122  1.000000000  0.04288636 -0.003408068  0.076500923
## V11     0.022387955  0.042886357  1.00000000  0.289211853  0.537409953
## V12    -0.009788052 -0.003408068  0.28921185  1.000000000  0.008718128
## V13     0.052059144  0.076500923  0.53740995  0.008718128  1.000000000
## V14     0.042031001  0.066352979  0.38984738  0.005222337  0.845248964
## V15    -0.017974026  0.014120056  0.18867067 -0.008763514  0.368935520
## V16     0.026452346  0.024164168  0.06203636 -0.011324186  0.112641556
##                  V14           V15          V16
## Sno     0.0005377308 -0.0237067961  0.053166223
## Target -0.0120227352 -0.0150077436  0.071777574
## V1     -0.0901738349 -0.1622873137 -0.077579135
## V2      0.0648551602 -0.0269013027  0.090185776
## V3      0.0175375013 -0.0578310427 -0.003745708
## V4      0.0615052939  0.0007581215  0.039909394
## V5      0.0203651617  0.0443585792  0.107413656
## V6      0.0071475510  0.0192606364  0.098005781
## V7      0.0414025262  0.1356728307  0.015972545
## V8      0.0558529108  0.1344894767  0.030618179
## V9      0.0420310006 -0.0179740263  0.026452346
## V10     0.0663529785  0.0141200561  0.024164168
## V11     0.3898473842  0.1886706744  0.062036362
## V12     0.0052223374 -0.0087635143 -0.011324186
## V13     0.8452489641  0.3689355197  0.112641556
## V14     1.0000000000  0.2242946126  0.072445626
## V15     0.2242946126  1.0000000000  0.302374962
## V16     0.0724456258  0.3023749618  1.000000000
library(corrplot)
corrplot(cor(train),method = 'color')

corrgram(train, order=TRUE, lower.panel=panel.shade,
         upper.panel=panel.pie, text.panel=panel.txt,
         main="Loan Data")

Running some simple tests - chisquare etc (new dataset)

We can test the accuracy of our understanding of the correlations between the Target variable and other fields using the chisquare and t-tests etc.

chisq.test(xtabs(~Target + V1, data = train))
## 
##  Pearson's Chi-squared test
## 
## data:  xtabs(~Target + V1, data = train)
## X-squared = 83908, df = 79212, p-value < 2.2e-16
chisq.test(xtabs(~Target + V2, data = train))
## 
##  Pearson's Chi-squared test
## 
## data:  xtabs(~Target + V2, data = train)
## X-squared = 14196, df = 14760, p-value = 0.9996
chisq.test(xtabs(~Target + V3, data = train))
## 
##  Pearson's Chi-squared test
## 
## data:  xtabs(~Target + V3, data = train)
## X-squared = 2977.1, df = 1968, p-value < 2.2e-16
chisq.test(xtabs(~Target + V4, data = train))
## 
##  Pearson's Chi-squared test
## 
## data:  xtabs(~Target + V4, data = train)
## X-squared = 363080, df = 268630, p-value < 2.2e-16
chisq.test(xtabs(~Target + V5, data = train))
## 
##  Pearson's Chi-squared test
## 
## data:  xtabs(~Target + V5, data = train)
## X-squared = 1584.7, df = 2460, p-value = 1
chisq.test(xtabs(~Target + V6, data = train))
## 
##  Pearson's Chi-squared test
## 
## data:  xtabs(~Target + V6, data = train)
## X-squared = 138370, df = 126440, p-value < 2.2e-16
chisq.test(xtabs(~Target + V7, data = train))
## 
##  Pearson's Chi-squared test
## 
## data:  xtabs(~Target + V7, data = train)
## X-squared = 2073.2, df = 1968, p-value = 0.04866
chisq.test(xtabs(~Target + V8, data = train))
## 
##  Pearson's Chi-squared test
## 
## data:  xtabs(~Target + V8, data = train)
## X-squared = 101180, df = 64452, p-value < 2.2e-16
chisq.test(xtabs(~Target + V9, data = train))
## 
##  Pearson's Chi-squared test
## 
## data:  xtabs(~Target + V9, data = train)
## X-squared = 2618, df = 1476, p-value < 2.2e-16
chisq.test(xtabs(~Target + V10, data = train))
## 
##  Pearson's Chi-squared test
## 
## data:  xtabs(~Target + V10, data = train)
## X-squared = 168150, df = 122020, p-value < 2.2e-16
chisq.test(xtabs(~Target + V11, data = train))
## 
##  Pearson's Chi-squared test
## 
## data:  xtabs(~Target + V11, data = train)
## X-squared = 857.23, df = 984, p-value = 0.9985
chisq.test(xtabs(~Target + V12, data = train))
## 
##  Pearson's Chi-squared test
## 
## data:  xtabs(~Target + V12, data = train)
## X-squared = 2744.7, df = 3444, p-value = 1
chisq.test(xtabs(~Target + V13, data = train))
## 
##  Pearson's Chi-squared test
## 
## data:  xtabs(~Target + V13, data = train)
## X-squared = 772.88, df = 984, p-value = 1
chisq.test(xtabs(~Target + V14, data = train))
## 
##  Pearson's Chi-squared test
## 
## data:  xtabs(~Target + V14, data = train)
## X-squared = 3085.8, df = 1968, p-value < 2.2e-16
chisq.test(xtabs(~Target + V15, data = train))
## 
##  Pearson's Chi-squared test
## 
## data:  xtabs(~Target + V15, data = train)
## X-squared = 6052.2, df = 3936, p-value < 2.2e-16
chisq.test(xtabs(~Target + V16, data = train))
## 
##  Pearson's Chi-squared test
## 
## data:  xtabs(~Target + V16, data = train)
## X-squared = 171820, df = 176630, p-value = 1

We next run t-tests -

attach(train)
## The following objects are masked from train (pos = 3):
## 
##     V1, V10, V11, V12, V13, V14, V15, V16, V2, V3, V4, V5, V6, V7,
##     V8, V9
t.test(Target,V1, data = train)
## 
##  Welch Two Sample t-test
## 
## data:  Target and V1
## t = 116.03, df = 2052, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  461095.3 476949.8
## sample estimates:
##   mean of x   mean of y 
## 469863.6142    841.0813
t.test(Target,V2, data = train)
## 
##  Welch Two Sample t-test
## 
## data:  Target and V2
## t = 116.23, df = 2052, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  461896.9 477751.4
## sample estimates:
##    mean of x    mean of y 
## 469863.61422     39.46956
t.test(Target,V3, data = train)
## 
##  Welch Two Sample t-test
## 
## data:  Target and V3
## t = 116.24, df = 2052, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  461935.9 477790.4
## sample estimates:
##    mean of x    mean of y 
## 4.698636e+05 4.715051e-01
t.test(Target,V4, data = train)
## 
##  Welch Two Sample t-test
## 
## data:  Target and V4
## t = -13.326, df = 2064.7, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -1110547.8  -825609.3
## sample estimates:
## mean of x mean of y 
##  469863.6 1437942.1
t.test(Target,V5, data = train)
## 
##  Welch Two Sample t-test
## 
## data:  Target and V5
## t = 116.24, df = 2052, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  461936.1 477790.7
## sample estimates:
##    mean of x    mean of y 
## 4.698636e+05 2.269849e-01
t.test(Target,V6, data = train)
## 
##  Welch Two Sample t-test
## 
## data:  Target and V6
## t = -1.3207, df = 2075.7, p-value = 0.1867
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -175121.27   34172.24
## sample estimates:
## mean of x mean of y 
##  469863.6  540338.1
t.test(Target,V7, data = train)
## 
##  Welch Two Sample t-test
## 
## data:  Target and V7
## t = 116.24, df = 2052, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  461936.2 477790.7
## sample estimates:
##    mean of x    mean of y 
## 4.698636e+05 1.777886e-01
t.test(Target,V8, data = train)
## 
##  Welch Two Sample t-test
## 
## data:  Target and V8
## t = 56.754, df = 3679.6, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  385448.8 413033.0
## sample estimates:
## mean of x mean of y 
##  469863.6   70622.7
t.test(Target,V9, data = train)
## 
##  Welch Two Sample t-test
## 
## data:  Target and V9
## t = 116.24, df = 2052, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  461936.1 477790.6
## sample estimates:
##    mean of x    mean of y 
## 4.698636e+05 2.372138e-01
t.test(Target,V10, data = train)
## 
##  Welch Two Sample t-test
## 
## data:  Target and V10
## t = 13.124, df = 2197.9, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  243363.4 328868.2
## sample estimates:
## mean of x mean of y 
##  469863.6  183747.8
t.test(Target,V11, data = train)
## 
##  Welch Two Sample t-test
## 
## data:  Target and V11
## t = 116.24, df = 2052, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  461936.3 477790.9
## sample estimates:
##    mean of x    mean of y 
## 4.698636e+05 4.383829e-03
t.test(Target,V12, data = train)
## 
##  Welch Two Sample t-test
## 
## data:  Target and V12
## t = 3.5132, df = 2058.3, p-value = 0.0004523
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  160633.7 566575.2
## sample estimates:
## mean of x mean of y 
##  469863.6  106259.1
t.test(Target,V13, data = train)
## 
##  Welch Two Sample t-test
## 
## data:  Target and V13
## t = 116.24, df = 2052, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  461936.3 477790.9
## sample estimates:
##    mean of x    mean of y 
## 4.698636e+05 3.409644e-03
t.test(Target,V14, data = train)
## 
##  Welch Two Sample t-test
## 
## data:  Target and V14
## t = 111.48, df = 2363.8, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  459321.1 475769.0
## sample estimates:
##  mean of x  mean of y 
## 469863.614   2318.558
t.test(Target,V15, data = train)
## 
##  Welch Two Sample t-test
## 
## data:  Target and V15
## t = 116.24, df = 2052, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  461934.9 477789.4
## sample estimates:
##    mean of x    mean of y 
## 4.698636e+05 1.451047e+00
t.test(Target,V16, data = train)
## 
##  Welch Two Sample t-test
## 
## data:  Target and V16
## t = 83.408, df = 3521.1, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  392539.8 411438.7
## sample estimates:
## mean of x mean of y 
## 469863.61  67874.32

From the chi-square tests, using the p-value < 0.01, we can reject the null hypothesis and say that the Target is affected by the factors except V2, V5, V7, V11, V12, V13 and V16.

From the t-tests, we see variations between Target and V6 as well as V12.

Running the Regression model (on new dataset)

After understanding relations in the data, we can now move on to creating our model to predict values of DV from V1-V16.

Since we know that these are numerical values, and with our analysis are able to get some understanding of the relations between the data, we will first run a model that depends on all the variables.

fit1 <- lm(Target ~ ., data=train)
summary(fit1)
## 
## Call:
## lm(formula = Target ~ ., data = train)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -155719  -29168    -389   38523  117700 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  1.084e+05  3.107e+04   3.490 0.000494 ***
## Sno          2.811e+02  2.118e+00 132.690  < 2e-16 ***
## V1           3.982e+01  3.586e+01   1.110 0.266953    
## V2           5.012e+02  1.537e+02   3.260 0.001133 ** 
## V3           1.228e+04  2.182e+03   5.629 2.07e-08 ***
## V4           2.211e-03  5.272e-04   4.194 2.86e-05 ***
## V5           1.112e+04  2.443e+03   4.550 5.69e-06 ***
## V6          -4.174e-04  6.635e-04  -0.629 0.529435    
## V7          -6.722e+03  3.601e+03  -1.867 0.062065 .  
## V8           3.613e-02  6.161e-03   5.864 5.25e-09 ***
## V9           8.452e+03  2.440e+03   3.464 0.000543 ***
## V10          3.054e-03  1.256e-03   2.431 0.015144 *  
## V11          1.402e+04  1.742e+04   0.805 0.421095    
## V12          4.512e-05  2.452e-04   0.184 0.854036    
## V13         -4.175e+04  3.017e+04  -1.384 0.166597    
## V14         -4.106e-02  4.124e-02  -0.996 0.319501    
## V15          1.976e+03  1.615e+03   1.224 0.221160    
## V16          2.365e-02  9.626e-03   2.457 0.014089 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 48830 on 2035 degrees of freedom
## Multiple R-squared:  0.9295, Adjusted R-squared:  0.9289 
## F-statistic:  1579 on 17 and 2035 DF,  p-value: < 2.2e-16

We could create a linear regression model and find that the Target is most dependent on V2, V3, V4, V5, V8 and V9.

To better understand the characteristics of the regression model, we can generate its plots with fitted and residual values -

plot(fit1)

fitted(fit1)
##        1        2        3        4        5        6        7        8 
## 176168.0 168588.6 178928.4 167206.6 176767.1 176253.1 174939.2 165901.4 
##        9       10       11       12       13       14       15       16 
## 176977.4 169363.4 168692.4 179063.7 172291.4 190661.2 178189.0 168316.8 
##       17       18       19       20       21       22       23       24 
## 175930.2 175476.1 178616.6 175018.6 178822.9 180125.7 178073.6 181624.8 
##       25       26       27       28       29       30       31       32 
## 186147.5 172849.8 172522.6 174873.9 179769.1 179823.7 176421.4 182740.7 
##       33       34       35       36       37       38       39       40 
## 170906.8 177419.0 168454.8 171569.8 193077.5 181555.8 180142.5 185949.7 
##       41       42       43       44       45       46       47       48 
## 183214.5 173277.4 199763.1 183754.9 188481.3 186935.7 181008.0 191309.0 
##       49       50       51       52       53       54       55       56 
## 181669.8 173769.3 196120.3 201726.8 189141.0 182156.1 189265.6 189112.5 
##       57       58       59       60       61       62       63       64 
## 190834.6 181839.0 196402.9 195508.1 192292.0 192041.6 181348.4 183454.8 
##       65       66       67       68       69       70       71       72 
## 182930.7 192651.9 188039.5 190372.1 195130.2 188980.8 194644.5 199994.0 
##       73       74       75       76       77       78       79       80 
## 192658.7 190259.2 192158.2 202765.2 184421.7 203957.3 194845.1 199494.9 
##       81       82       83       84       85       86       87       88 
## 193499.1 183026.0 201594.6 196302.7 191044.9 186503.8 198562.0 193377.1 
##       89       90       91       92       93       94       95       96 
## 221612.2 182339.0 208033.0 184987.0 198041.6 210258.0 203369.4 193051.0 
##       97       98       99      100      101      102      103      104 
## 198007.1 212627.2 204275.1 212326.3 217928.9 184340.3 204233.2 199879.4 
##      105      106      107      108      109      110      111      112 
## 201028.5 208144.2 196578.3 202208.8 208532.6 211256.3 198328.7 207095.3 
##      113      114      115      116      117      118      119      120 
## 205423.4 205349.3 195237.5 203539.7 206079.3 213265.9 201379.7 213442.3 
##      121      122      123      124      125      126      127      128 
## 201236.1 213188.3 203509.6 206990.5 198877.3 200512.4 207741.2 210960.1 
##      129      130      131      132      133      134      135      136 
## 206393.1 209861.9 201385.0 239668.7 219428.4 201025.5 215724.5 207692.5 
##      137      138      139      140      141      142      143      144 
## 256124.5 218663.5 218518.2 214604.7 214139.6 220994.2 210492.2 214367.9 
##      145      146      147      148      149      150      151      152 
## 213337.2 214321.9 218575.0 217727.6 223089.8 205817.9 228401.1 223240.2 
##      153      154      155      156      157      158      159      160 
## 217734.6 218084.4 208808.8 217979.4 222970.4 224630.2 206258.9 224587.8 
##      161      162      163      164      165      166      167      168 
## 221471.9 208130.4 227036.3 209560.6 213920.7 219877.1 220885.4 215945.4 
##      169      170      171      172      173      174      175      176 
## 240075.2 219798.3 236052.0 211357.4 218993.0 226432.2 217216.7 214372.5 
##      177      178      179      180      181      182      183      184 
## 224679.5 229664.2 227131.6 231540.6 214692.6 212614.3 219627.2 231885.7 
##      185      186      187      188      189      190      191      192 
## 238570.6 232935.6 227187.0 224669.2 225129.3 203497.4 214642.2 224036.1 
##      193      194      195      196      197      198      199      200 
## 233683.1 245144.2 219509.3 227240.2 229239.0 217513.6 234960.2 219007.6 
##      201      202      203      204      205      206      207      208 
## 232792.3 235907.4 235323.9 222766.1 234660.1 228925.7 233305.5 248246.5 
##      209      210      211      212      213      214      215      216 
## 228427.2 242326.7 234531.1 242836.2 246000.7 222135.4 247795.8 237098.3 
##      217      218      219      220      221      222      223      224 
## 232317.0 229300.3 256375.3 240823.2 258632.9 238655.8 239949.4 239026.6 
##      225      226      227      228      229      230      231      232 
## 226784.3 238641.2 235197.9 240876.9 244776.0 242694.7 241146.0 244583.3 
##      233      234      235      236      237      238      239      240 
## 239047.6 245147.0 234744.3 239515.3 240923.3 256821.4 239407.7 239658.7 
##      241      242      243      244      245      246      247      248 
## 245442.2 234576.5 255294.3 239248.5 237084.3 241639.6 247691.5 245861.0 
##      249      250      251      252      253      254      255      256 
## 248318.6 237481.0 237625.0 251125.3 230433.2 253187.5 241009.5 256198.7 
##      257      258      259      260      261      262      263      264 
## 232757.7 241066.3 233454.5 259001.6 253580.7 257560.1 257695.3 241562.5 
##      265      266      267      268      269      270      271      272 
## 243183.5 237814.4 252426.3 251403.0 255977.3 254035.0 251500.4 263971.2 
##      273      274      275      276      277      278      279      280 
## 261957.8 252014.2 263415.9 260507.0 260266.3 251841.5 249939.6 259573.2 
##      281      282      283      284      285      286      287      288 
## 257565.1 258431.9 252098.9 257494.2 262973.9 251283.0 262820.3 266540.0 
##      289      290      291      292      293      294      295      296 
## 263633.6 239016.7 261795.4 253226.9 250388.8 270310.9 363298.6 258781.3 
##      297      298      299      300      301      302      303      304 
## 269263.4 260099.1 263566.9 276016.9 253665.8 264124.5 267998.7 268108.4 
##      305      306      307      308      309      310      311      312 
## 261409.0 274461.0 269002.1 263652.2 257997.8 272421.0 289419.4 275128.4 
##      313      314      315      316      317      318      319      320 
## 273870.5 258821.9 270227.1 262527.7 265508.2 264212.5 253792.7 263274.5 
##      321      322      323      324      325      326      327      328 
## 280378.6 288690.4 257783.0 256926.1 253634.1 271328.5 261294.4 275247.3 
##      329      330      331      332      333      334      335      336 
## 253627.2 281987.0 266848.7 260495.7 259470.5 283346.8 272433.2 261718.6 
##      337      338      339      340      341      342      343      344 
## 267423.1 283250.8 257303.2 269201.9 271964.4 265269.9 262051.7 278311.2 
##      345      346      347      348      349      350      351      352 
## 259608.8 259211.2 273515.4 269203.9 278148.2 292010.6 268451.2 280989.1 
##      353      354      355      356      357      358      359      360 
## 273338.4 286507.3 266173.0 263058.9 285303.5 290517.9 264143.6 283866.1 
##      361      362      363      364      365      366      367      368 
## 279431.2 283894.3 284320.8 273322.5 312093.0 275981.5 281262.5 273290.6 
##      369      370      371      372      373      374      375      376 
## 301884.3 282956.4 279802.5 282721.6 292215.1 286021.4 293342.8 292558.4 
##      377      378      379      380      381      382      383      384 
## 278723.4 287677.5 286182.0 299913.0 269055.8 289893.7 282716.1 299926.7 
##      385      386      387      388      389      390      391      392 
## 277379.1 299600.7 279956.0 273428.0 287666.6 321524.1 316306.5 299588.3 
##      393      394      395      396      397      398      399      400 
## 299874.7 301689.5 302269.8 284765.1 281625.5 304049.2 285558.3 283045.1 
##      401      402      403      404      405      406      407      408 
## 274934.3 281270.0 308467.1 294013.1 310395.0 294548.6 292344.5 283725.3 
##      409      410      411      412      413      414      415      416 
## 299090.5 305953.8 293935.6 297472.5 289873.7 299716.9 306640.4 279273.9 
##      417      418      419      420      421      422      423      424 
## 308374.4 283624.2 289524.3 299838.2 292709.6 309017.9 298514.4 309683.3 
##      425      426      427      428      429      430      431      432 
## 298134.6 295895.8 313458.8 318960.8 297739.8 295262.9 306749.1 294084.0 
##      433      434      435      436      437      438      439      440 
## 290423.4 307282.8 294447.2 295224.7 312172.4 302483.0 305299.0 285425.4 
##      441      442      443      444      445      446      447      448 
## 308783.6 314252.0 307338.6 313456.8 306996.8 302642.9 304778.9 328755.9 
##      449      450      451      452      453      454      455      456 
## 304984.5 315417.2 306102.3 290421.6 300095.9 304689.4 331743.2 323992.6 
##      457      458      459      460      461      462      463      464 
## 286656.5 290033.3 320040.8 317055.3 312939.2 319636.0 316321.8 315284.6 
##      465      466      467      468      469      470      471      472 
## 308330.5 317389.4 318056.5 311381.8 312544.4 317418.7 313763.1 309811.4 
##      473      474      475      476      477      478      479      480 
## 311535.6 307143.6 313635.9 336512.9 313644.4 311871.2 311035.4 317733.1 
##      481      482      483      484      485      486      487      488 
## 295924.2 336687.3 318055.7 295367.4 321423.6 299383.2 327078.3 334849.5 
##      489      490      491      492      493      494      495      496 
## 318852.4 311261.1 322143.6 330908.7 335546.3 348664.9 331095.2 317152.3 
##      497      498      499      500      501      502      503      504 
## 333549.9 313589.9 326059.9 316367.3 312996.3 317036.3 327440.8 326380.7 
##      505      506      507      508      509      510      511      512 
## 326227.9 319248.2 314326.8 340194.7 305743.2 334950.2 306773.9 322214.8 
##      513      514      515      516      517      518      519      520 
## 329356.7 324856.4 315783.0 324833.8 330698.8 317769.7 322404.1 312382.9 
##      521      522      523      524      525      526      527      528 
## 325555.0 325954.8 328214.8 337256.9 327291.6 329195.5 318432.3 338988.5 
##      529      530      531      532      533      534      535      536 
## 328942.1 328370.4 314991.9 323093.0 329054.3 348781.2 336368.4 332477.4 
##      537      538      539      540      541      542      543      544 
## 329032.5 342250.6 349265.9 328717.6 333354.2 338935.8 322686.1 339696.9 
##      545      546      547      548      549      550      551      552 
## 335977.2 333576.8 336474.3 316578.8 335827.2 345037.7 335602.6 354723.8 
##      553      554      555      556      557      558      559      560 
## 345707.9 319754.0 336894.8 326391.7 335510.3 350247.4 334645.7 349637.8 
##      561      562      563      564      565      566      567      568 
## 345561.3 345368.1 371716.9 322140.0 342831.5 342294.0 348118.1 342451.1 
##      569      570      571      572      573      574      575      576 
## 340132.0 344443.1 359737.9 335253.6 362379.6 343518.1 335123.0 338415.8 
##      577      578      579      580      581      582      583      584 
## 341307.1 361448.8 338890.8 348371.6 341223.6 338361.4 351561.5 378197.9 
##      585      586      587      588      589      590      591      592 
## 344467.4 352515.8 337656.1 350792.5 349792.4 361541.3 350497.2 343591.7 
##      593      594      595      596      597      598      599      600 
## 365048.6 348869.8 329878.9 347621.8 351605.0 357148.6 359963.5 361577.3 
##      601      602      603      604      605      606      607      608 
## 349958.0 356069.5 349706.2 350181.4 353015.1 349676.1 336832.2 365684.4 
##      609      610      611      612      613      614      615      616 
## 368754.0 369460.5 363285.5 352791.3 352593.6 362071.4 384037.8 347649.6 
##      617      618      619      620      621      622      623      624 
## 367517.6 347358.6 355053.6 350065.4 348974.7 341124.5 365792.9 355672.2 
##      625      626      627      628      629      630      631      632 
## 359464.3 372853.1 367914.6 362506.4 358447.3 357296.9 382645.9 366515.0 
##      633      634      635      636      637      638      639      640 
## 342580.3 360699.0 360354.3 379660.6 376928.2 354045.2 360882.7 361554.6 
##      641      642      643      644      645      646      647      648 
## 377912.4 342402.6 344003.6 343381.1 344594.4 342406.8 345320.4 343189.7 
##      649      650      651      652      653      654      655      656 
## 347631.9 342266.0 342672.2 344936.4 344196.9 360954.0 338119.1 346093.6 
##      657      658      659      660      661      662      663      664 
## 343330.3 344895.1 345948.3 345368.1 348320.0 347762.2 350909.6 349470.9 
##      665      666      667      668      669      670      671      672 
## 344958.3 348211.0 351275.3 346113.2 352517.8 350375.7 350469.0 357798.9 
##      673      674      675      676      677      678      679      680 
## 354253.2 350323.7 353932.9 350725.7 361996.1 356913.9 349005.9 356206.3 
##      681      682      683      684      685      686      687      688 
## 354842.7 365874.6 354651.3 354277.8 352373.3 354060.1 356525.0 359309.3 
##      689      690      691      692      693      694      695      696 
## 355716.1 355371.4 356221.3 351498.3 360105.5 363142.5 359165.9 355176.1 
##      697      698      699      700      701      702      703      704 
## 355697.8 378361.8 358969.0 359224.5 361615.6 366459.8 362967.2 360741.4 
##      705      706      707      708      709      710      711      712 
## 363441.2 366018.6 362056.6 363326.0 368115.1 359971.2 364485.3 363553.8 
##      713      714      715      716      717      718      719      720 
## 361227.5 362480.8 367877.1 366279.3 373881.8 362515.9 370775.3 362621.2 
##      721      722      723      724      725      726      727      728 
## 366054.8 366148.1 374256.9 376099.4 373211.8 373912.2 370008.2 375085.5 
##      729      730      731      732      733      734      735      736 
## 368885.2 375697.0 366661.8 367699.4 363507.1 376844.6 366488.6 365711.0 
##      737      738      739      740      741      742      743      744 
## 366741.7 372088.1 372184.0 383141.0 370158.1 370147.3 370172.3 378407.2 
##      745      746      747      748      749      750      751      752 
## 369489.9 373683.2 371597.0 377680.9 374970.6 371969.3 376410.5 375269.3 
##      753      754      755      756      757      758      759      760 
## 376714.9 376120.5 377903.2 372152.2 382020.7 373606.8 373699.3 375428.8 
##      761      762      763      764      765      766      767      768 
## 373845.9 376355.8 375086.7 380920.4 375883.3 374651.4 378086.5 382987.8 
##      769      770      771      772      773      774      775      776 
## 386269.8 375517.8 377659.0 377309.9 395097.9 378947.1 382707.8 376761.8 
##      777      778      779      780      781      782      783      784 
## 377815.9 380471.3 380511.7 374096.6 381236.7 385761.6 377399.8 380412.2 
##      785      786      787      788      789      790      791      792 
## 385001.0 378095.1 389368.1 390423.2 382057.9 381670.0 386092.1 387299.1 
##      793      794      795      796      797      798      799      800 
## 384214.8 380563.5 385521.8 387175.3 385366.1 385460.9 389911.8 386648.1 
##      801      802      803      804      805      806      807      808 
## 401840.2 397680.1 386824.6 388238.9 394848.1 386494.3 385564.4 392643.8 
##      809      810      811      812      813      814      815      816 
## 398871.2 391109.9 389424.4 406182.6 394014.5 392093.5 389867.0 396596.6 
##      817      818      819      820      821      822      823      824 
## 391574.3 393293.4 398248.3 388290.5 390574.5 402429.2 392384.8 389921.1 
##      825      826      827      828      829      830      831      832 
## 396817.9 392822.9 401132.3 410668.7 397907.6 394186.1 428790.5 401030.4 
##      833      834      835      836      837      838      839      840 
## 409960.9 412424.6 418190.3 398544.6 406184.0 403507.4 410266.1 413610.7 
##      841      842      843      844      845      846      847      848 
## 408207.6 407131.9 399783.4 405311.6 421387.2 403512.4 410030.0 417289.4 
##      849      850      851      852      853      854      855      856 
## 407961.7 417972.0 406622.6 406481.7 413273.2 408352.8 407082.4 410488.2 
##      857      858      859      860      861      862      863      864 
## 407853.6 411554.7 410669.4 415445.0 428455.0 413560.7 410747.2 409163.9 
##      865      866      867      868      869      870      871      872 
## 415720.8 463734.4 409382.6 423601.3 410255.9 411070.1 417436.3 417330.4 
##      873      874      875      876      877      878      879      880 
## 414584.9 413422.5 415351.8 409866.0 417659.0 417399.1 413312.4 410785.6 
##      881      882      883      884      885      886      887      888 
## 419035.7 415357.1 364307.1 418757.5 429389.0 420490.8 414137.2 442520.0 
##      889      890      891      892      893      894      895      896 
## 420379.0 422882.1 423502.4 419954.6 426900.4 420132.2 426300.5 422592.7 
##      897      898      899      900      901      902      903      904 
## 460954.0 418692.7 422008.5 420535.9 420157.1 414278.1 425893.8 420442.4 
##      905      906      907      908      909      910      911      912 
## 422268.6 425679.8 426603.7 425381.3 427563.7 426259.6 421196.3 420594.5 
##      913      914      915      916      917      918      919      920 
## 428357.6 421313.7 432820.3 422464.1 435979.6 534087.2 468649.6 428042.6 
##      921      922      923      924      925      926      927      928 
## 429953.0 426588.0 431679.1 429223.2 422487.9 431137.9 432908.2 429060.8 
##      929      930      931      932      933      934      935      936 
## 432274.9 427268.9 423749.0 444062.0 424342.6 429120.4 426521.3 435574.6 
##      937      938      939      940      941      942      943      944 
## 449147.4 433230.1 434727.3 438866.5 430558.2 431150.9 434261.4 438673.2 
##      945      946      947      948      949      950      951      952 
## 430399.7 426036.9 438293.2 435216.0 434798.2 434931.6 441684.4 433369.6 
##      953      954      955      956      957      958      959      960 
## 431772.3 445106.8 447821.1 435554.2 435402.5 433655.6 432149.2 441786.3 
##      961      962      963      964      965      966      967      968 
## 435330.1 438093.3 444671.7 443096.1 443986.4 436016.7 440093.3 440190.0 
##      969      970      971      972      973      974      975      976 
## 445882.7 435438.4 435691.3 436166.7 440004.5 438138.0 436256.9 446283.3 
##      977      978      979      980      981      982      983      984 
## 445856.9 440121.8 453997.9 437539.3 434140.7 444407.1 449119.1 451412.8 
##      985      986      987      988      989      990      991      992 
## 477468.7 441602.0 439979.5 453658.5 450111.3 458000.8 452178.9 445676.2 
##      993      994      995      996      997      998      999     1000 
## 460383.7 447657.2 452403.9 444307.3 453090.6 451860.4 447428.3 445734.6 
##     1001     1002     1003     1004     1005     1006     1007     1008 
## 453357.1 454769.6 450425.8 448366.9 444864.0 447389.9 445919.5 443374.5 
##     1009     1010     1011     1012     1013     1014     1015     1016 
## 444554.9 442941.2 454946.2 454533.5 449660.4 445196.1 455164.0 451824.1 
##     1017     1018     1019     1020     1021     1022     1023     1024 
## 446517.0 469518.7 448900.5 451138.5 457077.1 454194.4 450604.5 451260.4 
##     1025     1026     1027     1028     1029     1030     1031     1032 
## 446838.8 463525.3 451379.4 454360.9 454294.9 451583.8 463430.4 453908.9 
##     1033     1034     1035     1036     1037     1038     1039     1040 
## 456415.4 456232.5 451965.9 449213.9 456612.5 463082.7 456837.3 453206.7 
##     1041     1042     1043     1044     1045     1046     1047     1048 
## 461567.5 457425.1 452518.8 452710.7 462136.6 456289.4 464712.8 457204.2 
##     1049     1050     1051     1052     1053     1054     1055     1056 
## 457297.6 460629.3 459909.8 465772.1 461625.8 460646.8 465475.0 461155.9 
##     1057     1058     1059     1060     1061     1062     1063     1064 
## 460655.4 474521.5 460557.1 459430.7 466529.1 461599.4 461681.4 460960.1 
##     1065     1066     1067     1068     1069     1070     1071     1072 
## 463342.0 463578.7 474080.3 463760.3 472428.7 460538.9 475511.4 467687.2 
##     1073     1074     1075     1076     1077     1078     1079     1080 
## 469442.7 462098.5 467500.0 467937.3 464670.4 472213.6 463873.5 468878.3 
##     1081     1082     1083     1084     1085     1086     1087     1088 
## 475431.2 472836.4 474126.5 475852.7 465916.6 480733.2 470613.9 474192.6 
##     1089     1090     1091     1092     1093     1094     1095     1096 
## 471040.8 468928.5 468408.1 468682.0 474949.3 470333.3 477294.4 474031.4 
##     1097     1098     1099     1100     1101     1102     1103     1104 
## 471495.0 474211.6 470797.8 474371.2 469583.7 481136.6 469071.7 482921.4 
##     1105     1106     1107     1108     1109     1110     1111     1112 
## 474782.7 475469.6 475521.0 475069.8 482449.1 475271.8 476312.8 471012.7 
##     1113     1114     1115     1116     1117     1118     1119     1120 
## 471915.3 477238.6 479805.5 477119.4 476414.6 486482.8 476618.3 475466.0 
##     1121     1122     1123     1124     1125     1126     1127     1128 
## 481408.4 475925.1 475306.3 478707.5 490710.6 477703.0 482515.6 487467.0 
##     1129     1130     1131     1132     1133     1134     1135     1136 
## 503206.3 480386.4 481872.3 479782.8 481778.2 477834.6 488349.9 493348.4 
##     1137     1138     1139     1140     1141     1142     1143     1144 
## 479743.1 478670.4 482406.0 480715.3 484738.3 482034.1 482265.7 482166.8 
##     1145     1146     1147     1148     1149     1150     1151     1152 
## 488995.1 484279.2 483448.0 486911.9 502834.1 483254.3 493229.4 515119.1 
##     1153     1154     1155     1156     1157     1158     1159     1160 
## 486057.2 484809.7 485997.0 506651.0 489264.1 494760.3 486898.8 489791.0 
##     1161     1162     1163     1164     1165     1166     1167     1168 
## 486147.0 485911.4 491634.9 488845.2 489691.2 494812.0 486655.4 488346.5 
##     1169     1170     1171     1172     1173     1174     1175     1176 
## 490569.1 489559.5 490962.4 498646.0 498151.4 493110.1 493553.1 496172.9 
##     1177     1178     1179     1180     1181     1182     1183     1184 
## 495464.0 490311.6 493626.9 491855.0 505918.2 495913.4 488806.9 498045.0 
##     1185     1186     1187     1188     1189     1190     1191     1192 
## 494751.8 501979.8 503750.2 499714.6 497384.2 498937.7 497953.9 497176.7 
##     1193     1194     1195     1196     1197     1198     1199     1200 
## 495874.6 495094.4 506398.6 496900.4 499408.7 503173.0 501673.4 496926.3 
##     1201     1202     1203     1204     1205     1206     1207     1208 
## 501027.2 499076.8 500331.7 502343.1 498584.4 502074.2 506938.6 513132.4 
##     1209     1210     1211     1212     1213     1214     1215     1216 
## 503506.9 507201.0 498634.7 506751.0 509584.9 504903.4 502096.6 500456.1 
##     1217     1218     1219     1220     1221     1222     1223     1224 
## 527583.6 504184.3 502920.3 506846.1 509176.7 508637.8 506351.3 510081.4 
##     1225     1226     1227     1228     1229     1230     1231     1232 
## 504147.1 506391.3 502391.2 506465.2 506803.5 507775.5 509562.5 509445.4 
##     1233     1234     1235     1236     1237     1238     1239     1240 
## 509674.5 521040.3 504653.6 511659.6 507192.4 507862.5 511122.1 510525.5 
##     1241     1242     1243     1244     1245     1246     1247     1248 
## 512682.2 528240.1 512394.1 520497.9 513595.8 518056.8 519599.5 511677.4 
##     1249     1250     1251     1252     1253     1254     1255     1256 
## 523181.6 509431.6 512616.7 518638.5 521108.4 516437.7 524003.9 515509.4 
##     1257     1258     1259     1260     1261     1262     1263     1264 
## 516939.0 518233.5 513924.4 516648.1 526763.1 516530.7 531106.1 569490.0 
##     1265     1266     1267     1268     1269     1270     1271     1272 
## 523436.7 519713.5 515671.8 520477.2 523187.2 509205.7 516053.4 529959.4 
##     1273     1274     1275     1276     1277     1278     1279     1280 
## 525315.5 538627.9 533381.9 538710.2 558354.7 551957.7 547365.6 543290.6 
##     1281     1282     1283     1284     1285     1286     1287     1288 
## 541339.6 539068.9 544293.2 528056.8 540821.2 564562.6 560742.5 544912.1 
##     1289     1290     1291     1292     1293     1294     1295     1296 
## 567020.4 546155.3 543779.9 548603.6 552934.6 550087.6 543025.8 543086.7 
##     1297     1298     1299     1300     1301     1302     1303     1304 
## 553139.3 599718.6 530422.8 549688.8 528822.2 543956.3 552722.0 537280.0 
##     1305     1306     1307     1308     1309     1310     1311     1312 
## 539788.3 547959.7 544857.6 447552.1 547725.1 548363.6 553334.3 547968.4 
##     1313     1314     1315     1316     1317     1318     1319     1320 
## 565567.6 553663.6 545610.9 551776.0 559364.6 563283.4 575042.7 548086.4 
##     1321     1322     1323     1324     1325     1326     1327     1328 
## 567775.8 542594.7 554373.8 562024.7 563907.0 550157.3 555259.6 568305.1 
##     1329     1330     1331     1332     1333     1334     1335     1336 
## 557365.5 565935.6 551453.2 568990.5 556710.8 554063.5 559626.2 551614.8 
##     1337     1338     1339     1340     1341     1342     1343     1344 
## 571675.6 569164.6 556895.8 556932.9 547163.0 550940.7 561910.2 557181.2 
##     1345     1346     1347     1348     1349     1350     1351     1352 
## 559174.5 558020.2 566312.7 561036.6 563366.1 561405.8 562121.7 553908.9 
##     1353     1354     1355     1356     1357     1358     1359     1360 
## 561014.8 562213.8 553083.6 571288.4 585335.0 580334.2 571169.1 545755.6 
##     1361     1362     1363     1364     1365     1366     1367     1368 
## 569374.4 554633.9 574808.4 571492.7 571143.1 568414.1 569657.3 570923.1 
##     1369     1370     1371     1372     1373     1374     1375     1376 
## 564637.9 564464.0 566685.6 565333.6 559099.4 572051.9 570796.8 560075.0 
##     1377     1378     1379     1380     1381     1382     1383     1384 
## 587703.2 568490.5 561314.0 563983.8 564427.7 572876.5 581090.1 584287.2 
##     1385     1386     1387     1388     1389     1390     1391     1392 
## 562794.4 579373.2 553122.0 560826.1 577523.5 576694.4 577190.8 578072.6 
##     1393     1394     1395     1396     1397     1398     1399     1400 
## 590894.1 573461.6 573995.0 584902.2 584699.3 605576.9 587613.1 582095.5 
##     1401     1402     1403     1404     1405     1406     1407     1408 
## 581268.5 562697.9 575132.3 574281.0 592028.1 568142.4 598932.9 561343.7 
##     1409     1410     1411     1412     1413     1414     1415     1416 
## 580008.8 566904.5 568757.3 595817.6 579938.9 581567.3 580054.0 577648.2 
##     1417     1418     1419     1420     1421     1422     1423     1424 
## 584211.6 580054.2 581515.1 590296.7 570524.2 583622.9 589532.8 602518.9 
##     1425     1426     1427     1428     1429     1430     1431     1432 
## 580325.2 561196.3 598961.4 591299.2 584195.3 580717.1 570670.5 581262.5 
##     1433     1434     1435     1436     1437     1438     1439     1440 
## 573087.9 582469.0 573836.5 589345.1 587079.1 592389.8 588424.8 593202.6 
##     1441     1442     1443     1444     1445     1446     1447     1448 
## 591896.5 570833.3 583381.3 597658.6 583082.0 589878.7 601053.0 598185.4 
##     1449     1450     1451     1452     1453     1454     1455     1456 
## 602925.0 590688.9 598778.8 598150.0 594057.7 577954.2 601852.4 592057.9 
##     1457     1458     1459     1460     1461     1462     1463     1464 
## 588759.8 593848.4 605705.3 591262.4 600093.2 604157.2 591281.1 589450.2 
##     1465     1466     1467     1468     1469     1470     1471     1472 
## 598869.1 605632.8 601667.2 585530.8 605777.2 600710.0 589125.3 591759.0 
##     1473     1474     1475     1476     1477     1478     1479     1480 
## 605864.7 618950.6 590456.0 601190.2 597876.6 599366.4 603792.5 611870.2 
##     1481     1482     1483     1484     1485     1486     1487     1488 
## 599076.6 577056.0 613806.2 621122.6 599548.0 594583.9 616348.0 617130.4 
##     1489     1490     1491     1492     1493     1494     1495     1496 
## 597725.7 602326.6 603830.7 612676.3 596516.6 601965.3 603527.5 599830.6 
##     1497     1498     1499     1500     1501     1502     1503     1504 
## 629735.7 641632.6 605981.1 609628.1 614402.8 597606.7 590229.7 612370.0 
##     1505     1506     1507     1508     1509     1510     1511     1512 
## 671509.8 629212.1 599128.8 609407.8 604615.5 616350.4 603451.5 616805.7 
##     1513     1514     1515     1516     1517     1518     1519     1520 
## 620957.5 614940.5 621618.6 624673.0 598957.7 610145.7 607877.8 608255.3 
##     1521     1522     1523     1524     1525     1526     1527     1528 
## 600336.0 598470.0 612649.6 637724.0 610424.9 629267.1 615679.8 608736.7 
##     1529     1530     1531     1532     1533     1534     1535     1536 
## 620863.5 613492.3 622864.6 630272.0 621825.2 604670.0 616439.1 612221.8 
##     1537     1538     1539     1540     1541     1542     1543     1544 
## 615949.2 633589.6 627362.3 635863.9 614354.2 615117.0 602803.5 619040.9 
##     1545     1546     1547     1548     1549     1550     1551     1552 
## 650962.8 627143.3 656828.9 624615.5 601642.0 622399.1 641339.1 636842.2 
##     1553     1554     1555     1556     1557     1558     1559     1560 
## 626022.6 648108.0 616136.3 603999.5 623591.0 597305.5 621663.3 620340.2 
##     1561     1562     1563     1564     1565     1566     1567     1568 
## 644072.2 622822.4 637188.6 634606.4 664090.4 666570.7 636967.7 605294.1 
##     1569     1570     1571     1572     1573     1574     1575     1576 
## 625740.6 625689.4 636399.1 646292.1 619640.0 632341.9 626173.6 620653.5 
##     1577     1578     1579     1580     1581     1582     1583     1584 
## 628905.2 633562.2 622172.7 631734.6 615467.7 632112.7 611166.0 623200.1 
##     1585     1586     1587     1588     1589     1590     1591     1592 
## 609337.0 661703.1 633682.5 627916.5 638488.7 644901.8 638823.5 635040.6 
##     1593     1594     1595     1596     1597     1598     1599     1600 
## 634794.9 629473.6 644488.7 630660.3 621374.2 638144.6 644182.5 631399.0 
##     1601     1602     1603     1604     1605     1606     1607     1608 
## 636272.5 638671.3 650523.5 631687.7 662817.2 655221.0 654405.2 633825.2 
##     1609     1610     1611     1612     1613     1614     1615     1616 
## 630930.3 655020.2 636255.1 660523.4 637295.1 660034.3 647920.4 668959.3 
##     1617     1618     1619     1620     1621     1622     1623     1624 
## 642240.5 651101.3 680456.1 661002.9 660717.3 629992.4 651475.9 647406.2 
##     1625     1626     1627     1628     1629     1630     1631     1632 
## 633845.4 669495.9 629399.5 648751.1 656034.2 633121.8 651312.6 653595.1 
##     1633     1634     1635     1636     1637     1638     1639     1640 
## 668192.6 642450.4 646645.0 630666.6 666789.8 668624.0 661881.3 657459.2 
##     1641     1642     1643     1644     1645     1646     1647     1648 
## 644583.2 631681.5 635168.4 652534.9 647900.8 667635.6 662607.4 672627.0 
##     1649     1650     1651     1652     1653     1654     1655     1656 
## 643590.6 695995.9 657538.9 660700.3 679272.6 676648.5 685510.8 668350.3 
##     1657     1658     1659     1660     1661     1662     1663     1664 
## 658154.2 673782.1 691122.8 662185.3 715757.3 673309.1 709158.2 664568.0 
##     1665     1666     1667     1668     1669     1670     1671     1672 
## 660616.1 658576.8 665411.2 701668.8 680015.3 673507.9 643386.6 681947.4 
##     1673     1674     1675     1676     1677     1678     1679     1680 
## 732387.0 666141.7 680001.8 667067.8 664654.1 661909.8 681925.4 714762.8 
##     1681     1682     1683     1684     1685     1686     1687     1688 
## 670964.8 658563.3 677601.0 640365.7 678488.3 657586.7 664073.2 689433.1 
##     1689     1690     1691     1692     1693     1694     1695     1696 
## 677109.2 703890.4 661822.3 632300.1 693546.0 679970.7 681817.0 678831.8 
##     1697     1698     1699     1700     1701     1702     1703     1704 
## 672304.7 692982.4 695981.3 668937.5 670884.0 666230.6 684720.0 674030.4 
##     1705     1706     1707     1708     1709     1710     1711     1712 
## 696075.4 740080.5 666145.4 678635.1 697430.8 676082.9 733287.3 682672.8 
##     1713     1714     1715     1716     1717     1718     1719     1720 
## 676572.0 664275.9 724277.5 683723.6 661115.2 679412.8 698891.1 685628.9 
##     1721     1722     1723     1724     1725     1726     1727     1728 
## 714635.7 739283.1 665527.5 714247.1 718212.6 681832.9 684744.1 676485.4 
##     1729     1730     1731     1732     1733     1734     1735     1736 
## 735099.2 664939.7 655677.3 682338.4 704966.5 686012.4 681982.3 677195.6 
##     1737     1738     1739     1740     1741     1742     1743     1744 
## 696339.3 692587.3 702090.0 678344.2 831281.2 712182.0 679224.7 688815.5 
##     1745     1746     1747     1748     1749     1750     1751     1752 
## 756047.1 694812.0 698070.0 714664.6 700712.8 657146.1 680503.1 685961.9 
##     1753     1754     1755     1756     1757     1758     1759     1760 
## 708436.6 690859.1 684906.4 677510.2 666814.7 715215.0 686444.7 790687.3 
##     1761     1762     1763     1764     1765     1766     1767     1768 
## 673446.7 703339.9 699252.0 697875.1 700749.7 660665.7 679013.6 665419.9 
##     1769     1770     1771     1772     1773     1774     1775     1776 
## 702659.7 679116.7 678956.7 685716.5 729789.6 677712.3 692672.8 742535.9 
##     1777     1778     1779     1780     1781     1782     1783     1784 
## 689333.9 700782.2 698215.9 706170.2 697740.3 698167.7 690021.5 697758.1 
##     1785     1786     1787     1788     1789     1790     1791     1792 
## 716596.2 718029.2 686768.1 711692.4 705623.9 762422.3 684450.9 726443.5 
##     1793     1794     1795     1796     1797     1798     1799     1800 
## 711090.7 708266.5 723119.0 763006.0 696551.3 709135.3 697540.5 673707.2 
##     1801     1802     1803     1804     1805     1806     1807     1808 
## 669002.4 706535.8 682350.5 720139.3 713853.4 769900.8 715220.4 697893.0 
##     1809     1810     1811     1812     1813     1814     1815     1816 
## 711521.9 775374.8 712954.8 718806.3 714106.3 698321.0 692414.8 699127.4 
##     1817     1818     1819     1820     1821     1822     1823     1824 
## 697856.1 672529.3 709635.9 705663.3 695902.0 677045.2 721884.9 708038.5 
##     1825     1826     1827     1828     1829     1830     1831     1832 
## 725803.8 697613.4 742519.9 735232.4 726271.6 722286.5 702155.6 678892.1 
##     1833     1834     1835     1836     1837     1838     1839     1840 
## 725619.5 711941.1 767385.5 687298.5 726865.6 742142.6 738019.2 736818.3 
##     1841     1842     1843     1844     1845     1846     1847     1848 
## 691286.1 713207.8 683158.5 734730.5 699484.8 742526.3 816870.0 760272.6 
##     1849     1850     1851     1852     1853     1854     1855     1856 
## 717566.2 711272.2 699053.7 725368.6 810735.5 708570.8 750295.6 725335.2 
##     1857     1858     1859     1860     1861     1862     1863     1864 
## 713875.5 708881.3 712720.6 721991.1 732005.5 754144.3 729749.5 743183.3 
##     1865     1866     1867     1868     1869     1870     1871     1872 
## 835624.3 709863.7 722789.3 733702.9 729715.2 716985.5 705564.8 701469.5 
##     1873     1874     1875     1876     1877     1878     1879     1880 
## 707224.1 734030.1 780122.8 732521.4 728621.4 723148.5 729612.1 746119.2 
##     1881     1882     1883     1884     1885     1886     1887     1888 
## 721776.3 721626.2 721565.4 722175.9 823901.8 720615.7 749124.3 725457.5 
##     1889     1890     1891     1892     1893     1894     1895     1896 
## 734865.5 759120.2 729616.2 747345.4 732541.9 750383.6 723006.2 752682.5 
##     1897     1898     1899     1900     1901     1902     1903     1904 
## 763067.9 750824.9 743408.1 731790.5 701932.1 712992.5 745835.2 724142.5 
##     1905     1906     1907     1908     1909     1910     1911     1912 
## 716407.8 762928.3 734851.5 704561.8 748165.8 757004.1 721880.2 715144.6 
##     1913     1914     1915     1916     1917     1918     1919     1920 
## 731824.3 770228.4 746948.1 728807.0 746724.9 757152.9 745476.4 731400.2 
##     1921     1922     1923     1924     1925     1926     1927     1928 
## 711739.6 744844.7 741526.6 750744.2 741977.9 749912.3 761128.5 762951.5 
##     1929     1930     1931     1932     1933     1934     1935     1936 
## 758611.2 743684.6 761431.0 769098.7 743476.0 749093.6 772659.4 740109.2 
##     1937     1938     1939     1940     1941     1942     1943     1944 
## 741085.8 731571.8 783515.2 736069.7 766065.5 739284.7 745109.8 742358.3 
##     1945     1946     1947     1948     1949     1950     1951     1952 
## 765596.3 741351.3 746642.2 737469.8 742695.9 784661.1 757086.2 732993.2 
##     1953     1954     1955     1956     1957     1958     1959     1960 
## 740462.1 754576.0 722640.3 746029.0 729480.2 737358.7 796958.0 746048.3 
##     1961     1962     1963     1964     1965     1966     1967     1968 
## 761806.6 781602.7 741598.7 749377.6 783861.7 758616.2 742601.0 753596.7 
##     1969     1970     1971     1972     1973     1974     1975     1976 
## 781489.7 748169.7 775784.9 800697.0 756548.7 769154.9 771200.1 760433.6 
##     1977     1978     1979     1980     1981     1982     1983     1984 
## 717469.3 771111.9 745627.1 806217.6 726388.3 763791.3 748329.0 770991.5 
##     1985     1986     1987     1988     1989     1990     1991     1992 
## 777205.3 740464.0 750933.5 757132.8 805722.9 766136.9 734175.9 755915.6 
##     1993     1994     1995     1996     1997     1998     1999     2000 
## 743813.0 764103.9 742596.2 753273.7 752856.6 764840.1 764394.2 744382.9 
##     2001     2002     2003     2004     2005     2006     2007     2008 
## 761296.0 739336.9 755292.3 765588.5 748393.0 755612.6 769476.7 752550.1 
##     2009     2010     2011     2012     2013     2014     2015     2016 
## 775971.0 751226.0 765279.2 771071.5 830200.4 755779.0 766303.1 759493.8 
##     2017     2018     2019     2020     2021     2022     2023     2024 
## 768094.4 768010.8 769717.7 794461.6 758668.0 739232.5 750977.4 762869.7 
##     2025     2026     2027     2028     2029     2030     2031     2032 
## 778326.1 767345.9 758778.4 773732.6 777584.0 754739.9 778051.7 761093.2 
##     2033     2034     2035     2036     2037     2038     2039     2040 
## 803351.0 737404.1 764959.0 775434.4 772120.4 761235.0 763275.8 785589.4 
##     2041     2042     2043     2044     2045     2046     2047     2048 
## 824890.4 778196.2 764707.7 774095.4 788124.8 777976.6 790104.3 769438.5 
##     2049     2050     2051     2052     2053 
## 803173.0 776892.5 762600.3 778233.5 788305.9
residuals(fit1)
##             1             2             3             4             5 
##  -29167.99856  -21588.61298  -31928.44015  -20206.59376  -28767.08160 
##             6             7             8             9            10 
##  -28253.13527  -26939.22639  -17901.38954  -28977.39667  -20363.40379 
##            11            12            13            14            15 
##  -18692.43635  -29063.69807  -22291.36865  -38661.21867  -26188.95629 
##            16            17            18            19            20 
##  -15316.79736  -22930.22568  -22476.08796  -25616.64354  -22018.58253 
##            21            22            23            24            25 
##  -25822.88523  -27125.70267  -25073.56730  -28624.84930  -33147.51675 
##            26            27            28            29            30 
##  -19849.75593  -19522.58047  -21873.87837  -26769.10598  -26823.70545 
##            31            32            33            34            35 
##  -23421.36139  -29740.73368  -17906.82104  -24418.96156  -15454.76561 
##            36            37            38            39            40 
##  -18569.83738  -39077.46745  -26555.76613  -25142.50992  -30949.70227 
##            41            42            43            44            45 
##  -27214.50170  -17277.42503  -42763.05447  -25754.94453  -30481.33262 
##            46            47            48            49            50 
##  -27935.70974  -21008.01299  -30308.97504  -19669.75804  -11769.32796 
##            51            52            53            54            55 
##  -34120.30401  -38726.79154  -26140.95452  -19156.06997  -26265.62415 
##            56            57            58            59            60 
##  -26112.45638  -27834.56957  -18838.99929  -33402.87170  -32508.09546 
##            61            62            63            64            65 
##  -29291.95003  -29041.64661  -17348.42871  -19454.75284  -18930.68038 
##            66            67            68            69            70 
##  -28651.93731  -24039.52142  -26372.06737  -31130.15630  -24980.82887 
##            71            72            73            74            75 
##  -30644.51948  -35994.02219  -28658.69749  -26259.21771  -28158.22888 
##            76            77            78            79            80 
##  -37765.21821  -19421.65979  -37957.26563  -28845.14972  -32494.91577 
##            81            82            83            84            85 
##  -26499.11925  -15026.00437  -33594.60634  -27302.70073  -22044.89080 
##            86            87            88            89            90 
##  -17503.79496  -29561.99106  -24377.12460  -51612.16146  -11339.01595 
##            91            92            93            94            95 
##  -36033.02079  -12987.00880  -26041.59329  -37257.97251  -30369.43832 
##            96            97            98            99           100 
##  -20050.96096  -24007.14538  -37627.16554  -29275.12462  -36326.29313 
##           101           102           103           104           105 
##  -41928.94866   -7340.32101  -27233.17023  -21879.40340  -23028.45962 
##           106           107           108           109           110 
##  -30144.19757  -18578.31267  -23208.77917  -29532.55601  -32256.30632 
##           111           112           113           114           115 
##  -18328.67613  -27095.28832  -24423.41090  -24349.28460  -14237.50804 
##           116           117           118           119           120 
##  -21539.65747  -24079.31672  -30265.87597  -17379.73693  -29442.34116 
##           121           122           123           124           125 
##  -17236.08529  -29188.28278  -19509.55218  -22990.51768  -14877.31986 
##           126           127           128           129           130 
##  -16512.39102  -22741.22401  -24960.05321  -20393.12614  -22861.89661 
##           131           132           133           134           135 
##  -14384.99174  -51668.66887  -31428.42751  -13025.48192  -27724.48941 
##           136           137           138           139           140 
##  -18692.45444  -67124.50897  -28663.50366  -27518.24873  -22604.70842 
##           141           142           143           144           145 
##  -21139.59603  -27994.17904  -17492.23645  -20367.86811  -19337.22061 
##           146           147           148           149           150 
##  -19321.94735  -22574.99040  -21727.55179  -27089.84885   -9817.86531 
##           151           152           153           154           155 
##  -31401.07852  -26240.16419  -20734.58920  -21084.39535  -11808.84653 
##           156           157           158           159           160 
##  -19979.39487  -23970.41242  -24630.24106   -6258.85674  -23587.80272 
##           161           162           163           164           165 
##  -20471.94728   -6130.43110  -24036.27426   -6560.61889  -10920.68226 
##           166           167           168           169           170 
##  -15877.13240  -16885.39168  -10945.41933  -33075.19198  -12798.28189 
##           171           172           173           174           175 
##  -29051.99960   -4357.37526  -11993.02216  -18432.19829   -9216.67618 
##           176           177           178           179           180 
##   -5372.47366  -15679.46406  -20664.18897  -18131.64975  -20540.56040 
##           181           182           183           184           185 
##   -3692.63685   -1614.26022   -7627.24920  -19885.69734  -26570.55335 
##           186           187           188           189           190 
##  -20935.59612  -15186.95928  -11669.23071  -12129.33328   10502.59146 
##           191           192           193           194           195 
##    -642.19476   -9036.06287  -18683.14312  -30144.19955   -4509.25674 
##           196           197           198           199           200 
##  -12240.19579  -14238.95839   -2513.60329  -18960.21267   -2007.61786 
##           201           202           203           204           205 
##  -15792.33624  -17907.43399  -16323.90147   -3766.11292  -14660.07506 
##           206           207           208           209           210 
##   -8925.72151  -13305.45924  -27246.46012   -6427.15860  -19326.71308 
##           211           212           213           214           215 
##  -11531.05057  -19836.16724  -22000.65165    1864.56555  -22795.81144 
##           216           217           218           219           220 
##  -11098.31961   -6316.98276   -3300.31666  -29375.33204  -13823.23365 
##           221           222           223           224           225 
##  -30632.92941  -10655.78297  -10949.39553  -10026.63941    3215.74081 
##           226           227           228           229           230 
##   -8641.16622   -5197.92931  -10876.88465  -14776.01323  -12694.66324 
##           231           232           233           234           235 
##  -11145.97010  -13583.32930   -7047.60431  -13147.00119   -2744.33678 
##           236           237           238           239           240 
##   -7515.28677   -8923.27150  -24821.39336   -7407.74640   -6658.72357 
##           241           242           243           244           245 
##  -12442.18202    -576.45481  -21294.30895   -4248.50448   -2084.32709 
##           246           247           248           249           250 
##   -6639.61191  -10691.50991   -8860.95766  -11318.63947     519.00858 
##           251           252           253           254           255 
##     374.96287  -13125.29297    8566.83132  -13187.50848   -1009.49909 
##           256           257           258           259           260 
##  -15198.65741   10242.28910    1933.74451    9545.47077  -16001.55266 
##           261           262           263           264           265 
##   -8580.73827  -12560.07666  -12695.32369    3437.53511    1816.49824 
##           266           267           268           269           270 
##    7185.58339   -7426.34073   -6402.99101  -10977.33682   -9034.98805 
##           271           272           273           274           275 
##   -6500.35786  -18971.17382  -15957.80882   -6014.16010  -17415.92583 
##           276           277           278           279           280 
##  -14507.04719  -14266.29943   -4841.54711   -2939.55873  -12573.20767 
##           281           282           283           284           285 
##  -10565.08847   -9431.86306   -3098.89917   -7494.16514  -10973.93103 
##           286           287           288           289           290 
##    1716.97904   -9820.27465  -12539.97504   -9633.57591   14983.31786 
##           291           292           293           294           295 
##   -6795.35521    1773.12148    4611.16316  -14310.93190 -107298.56585 
##           296           297           298           299           300 
##   -1781.31831  -11263.44352   -2099.14405   -3566.85564  -16016.89965 
##           301           302           303           304           305 
##    7334.24731   -3124.49767   -6998.69956   -7108.35570    -408.98526 
##           306           307           308           309           310 
##  -13460.97379   -8002.08128   -2652.17901    3002.15942   -9420.99902 
##           311           312           313           314           315 
##  -25419.37955  -11128.41761   -9870.53051    6178.14736   -4227.10668 
##           316           317           318           319           320 
##    3472.28327    2491.75542    3787.49678   15207.34896    5725.51945 
##           321           322           323           324           325 
##  -10378.61252  -17690.38627   14216.95564   17073.90365   20365.92551 
##           326           327           328           329           330 
##    3671.49737   13705.56811     752.73495   22372.75143   -4987.02678 
##           331           332           333           334           335 
##   10151.32459   16504.28171   17529.49270   -6346.83988    4566.78803 
##           336           337           338           339           340 
##   15281.38217   10576.86811   -5250.81599   20696.76550    8798.07060 
##           341           342           343           344           345 
##    6035.55203   13730.06465   16948.34013    1688.78832   20391.24425 
##           346           347           348           349           350 
##   20788.78861    6484.58777   11796.11593    2851.78687  -11010.56612 
##           351           352           353           354           355 
##   13548.77895    2010.93551   10661.58523   -2507.32426   17827.01487 
##           356           357           358           359           360 
##   21941.05865     696.46590   -4517.90474   22856.39124    3133.91502 
##           361           362           363           364           365 
##    8568.75600    4105.66614    4679.17936   16677.51983  -21092.99940 
##           366           367           368           369           370 
##   16018.54260   10737.49441   18709.36584   -9884.30027   10043.58106 
##           371           372           373           374           375 
##   13197.49346   11278.38540    1784.85658    7978.58187     657.16702 
##           376           377           378           379           380 
##    1441.61204   16276.56728    7322.47450    9818.00099   -3913.02806 
##           381           382           383           384           385 
##   27944.24700    8106.28618   16283.92603    -926.74584   22620.92389 
##           386           387           388           389           390 
##     399.28649   21043.98181   27572.03012   13333.35672  -19524.05717 
##           391           392           393           394           395 
##  -14306.53577    3411.69151    4125.34946    2310.50292    1730.18571 
##           396           397           398           399           400 
##   20234.88037   24374.47025    1950.82895   21441.66419   23954.90978 
##           401           402           403           404           405 
##   32065.65672   25729.95097   -1467.11292   13986.90317   -1394.99499 
##           406           407           408           409           410 
##   14451.36844   17655.53091   26274.65435   10909.52093    4046.20717 
##           411           412           413           414           415 
##   16064.42726   13527.46182   22126.30137   12283.12996    6359.58407 
##           416           417           418           419           420 
##   34726.11881    5625.61882   31375.82415   26475.66403   17161.76674 
##           421           422           423           424           425 
##   24290.41045    7982.11782   19485.55462    8316.65484   20865.39141 
##           426           427           428           429           430 
##   23104.18200    5541.22690      39.21894   22260.20506   24737.11359 
##           431           432           433           434           435 
##   14250.87514   27915.99894   32576.63958   15717.18404   29552.83202 
##           436           437           438           439           440 
##   30775.27591   14827.56714   24517.02170   21700.97373   41574.59376 
##           441           442           443           444           445 
##   18216.44820   12748.04200   19661.44633   13543.17277   20003.18877 
##           446           447           448           449           450 
##   24357.10561   22221.06624   -1755.91604   22015.54960   11582.75258 
##           451           452           453           454           455 
##   20897.67770   37578.43455   28904.12669   24310.62403   -2743.24737 
##           456           457           458           459           460 
##    5007.40141   42343.49009   38966.68491    8959.17145   12944.71589 
##           461           462           463           464           465 
##   18060.79121   11363.99822   15678.23819   16715.39796   24669.47903 
##           466           467           468           469           470 
##   15610.60190   15943.50208   22618.19015   22455.64121   17581.28441 
##           471           472           473           474           475 
##   22236.86801   27188.55603   25464.43703   30856.39155   24364.09750 
##           476           477           478           479           480 
##    1487.11473   24355.59691   26128.76131   26964.58438   20266.91456 
##           481           482           483           484           485 
##   43075.79774    2312.71127   21944.26602   47632.60544   21576.41979 
##           486           487           488           489           490 
##   43616.80995   15921.66944    8150.51722   24147.59012   32738.85495 
##           491           492           493           494           495 
##   22856.44635   14091.29831   11453.71256   -1664.91038   16904.82907 
##           496           497           498           499           500 
##   30847.74298   15450.10479   36410.13700   23940.05757   34632.73050 
##           501           502           503           504           505 
##   38003.65017   33963.68468   24559.21410   25619.26572   25772.12150 
##           506           507           508           509           510 
##   32751.77254   39673.24622   14805.25636   50256.79682   21049.83552 
##           511           512           513           514           515 
##   50226.08857   35785.16522   29643.30334   34143.56548   44216.95891 
##           516           517           518           519           520 
##   35166.18489   29301.16852   43230.33589   38595.92196   50617.13987 
##           521           522           523           524           525 
##   38444.98260   39045.21803   36785.23478   27743.09930   38708.44733 
##           526           527           528           529           530 
##   37804.49290   49567.69335   29011.45770   40057.91771   40629.56957 
##           531           532           533           534           535 
##   54008.11857   45907.02057   39945.70847   21218.82652   33631.61852 
##           536           537           538           539           540 
##   38522.61550   42967.45394   29749.36846   23734.05048   44282.36999 
##           541           542           543           544           545 
##   39645.81891   35064.15845   51313.89082   35303.10979   39022.77794 
##           546           547           548           549           550 
##   42423.18423   39525.70368   60421.21685   42172.81482   33962.27306 
##           551           552           553           554           555 
##   44397.42261   25276.22710   34292.06282   62245.98567   46105.17640 
##           556           557           558           559           560 
##   57608.33011   48489.73201   34752.63453   51354.31106   37362.17800 
##           561           562           563           564           565 
##   42438.69258   43631.89082   18283.08765   68860.03889   49168.45378 
##           566           567           568           569           570 
##   49705.95267   43881.86495   49548.85876   51868.02823   48556.92757 
##           571           572           573           574           575 
##   34262.09659   59746.43921   32620.36642   52481.93225   62876.98547 
##           576           577           578           579           580 
##   60584.19353   57692.93365   37551.23013   60109.21283   51628.37824 
##           581           582           583           584           585 
##   58776.35784   61638.58918   49438.51105   22802.12405   57532.58108 
##           586           587           588           589           590 
##   49484.17002   65343.93808   53207.50569   55207.60720   43458.71916 
##           591           592           593           594           595 
##   54502.76986   61408.26461   40951.35051   58130.24021   78121.14802 
##           596           597           598           599           600 
##   60378.15722   56394.98157   50851.38567   48036.54735   46422.70594 
##           601           602           603           604           605 
##   58042.02201   51930.51385   58293.82311   57818.57651   54984.89997 
##           606           607           608           609           610 
##   58323.94437   72167.77647   43315.61521   42246.01260   41539.45130 
##           611           612           613           614           615 
##   48714.53279   59208.73051   60406.40199   50928.63004   29962.22341 
##           616           617           618           619           620 
##   66350.41294   46482.41127   67641.38971   59946.37029   65934.64817 
##           621           622           623           624           625 
##   68025.25523   75875.46537   51207.06999   62327.78622   59535.67421 
##           626           627           628           629           630 
##   47146.90129   52085.38672   58493.55011   63552.67090   64703.09991 
##           631           632           633           634           635 
##   39354.09827   56484.95085   80419.70710   63300.96758   64645.73318 
##           636           637           638           639           640 
##   45339.41316   48071.80869   71954.78072   66117.32462   66445.44322 
##           641           642           643           644           645 
##   50087.59681   86597.39820   84996.36398   85618.89394   84405.56736 
##           646           647           648           649           650 
##   86593.16774   83679.57555   85810.29152   81368.13184   86734.04071 
##           651           652           653           654           655 
##   86327.76412   84063.64408   84803.08940   68046.02356   90880.90201 
##           656           657           658           659           660 
##   82906.43062   85669.66058   84104.87608   83051.73560   83631.91112 
##           661           662           663           664           665 
##   80680.00509   81237.81486   78090.44367   79529.12888   84041.68110 
##           666           667           668           669           670 
##   80789.03011   77724.73803   82886.82082   76482.17956   78624.29289 
##           671           672           673           674           675 
##   78531.03098   71201.11662   74746.82043   78676.33596   75067.13001 
##           676           677           678           679           680 
##   78274.34168   67003.92414   72086.12553   79994.07951   72793.65593 
##           681           682           683           684           685 
##   74157.31512   63125.44725   74348.65719   74722.15052   76626.66637 
##           686           687           688           689           690 
##   74939.89278   72475.02034   69690.68688   73283.86174   73628.59178 
##           691           692           693           694           695 
##   72778.67481   77501.71163   68894.47735   65857.53070   69834.09505 
##           696           697           698           699           700 
##   73823.94696   73302.20827   50638.19400   70030.99478   69775.48265 
##           701           702           703           704           705 
##   67384.38819   62540.21651   66032.79385   68258.55322   65558.77488 
##           706           707           708           709           710 
##   62981.42904   66943.44226   65674.00959   60884.86932   69028.75402 
##           711           712           713           714           715 
##   64514.71593   65446.18220   67772.47449   66519.24473   61122.91976 
##           716           717           718           719           720 
##   62720.71561   55118.18305   66484.05717   58224.71336   66378.76803 
##           721           722           723           724           725 
##   62945.20891   62851.94700   54743.09999   52900.64736   55788.23568 
##           726           727           728           729           730 
##   55087.79122   58991.80786   53914.51575   60114.82595   53303.04936 
##           731           732           733           734           735 
##   62338.22597   61300.61911   65492.90870   52155.38670   62511.44443 
##           736           737           738           739           740 
##   63288.98416   62258.28258   56911.87162   56815.96421   45858.96884 
##           741           742           743           744           745 
##   58841.94777   58852.65631   58827.69063   50592.79115   59510.10072 
##           746           747           748           749           750 
##   55316.83969   57403.02886   51319.07918   54029.38577   57030.70699 
##           751           752           753           754           755 
##   52589.51347   53730.68840   52285.07198   52879.53686   51096.76660 
##           756           757           758           759           760 
##   56847.76734   46979.25474   55393.17672   55300.69260   53571.17179 
##           761           762           763           764           765 
##   55154.11778   52644.18776   53913.34746   48079.57631   53116.66066 
##           766           767           768           769           770 
##   54348.64841   50913.51871   46012.18691   42730.23489   53482.24464 
##           771           772           773           774           775 
##   51341.02303   51690.12161   33902.10014   50052.89982   46292.17279 
##           776           777           778           779           780 
##   52238.15319   51184.09024   48528.70100   48488.25341   54903.41488 
##           781           782           783           784           785 
##   47763.29258   43238.39434   51600.17101   48587.81954   43999.04640 
##           786           787           788           789           790 
##   50904.90536   39631.90792   38576.82654   46942.10777   47330.04908 
##           791           792           793           794           795 
##   42907.92981   41700.86254   44785.19829   48436.49967   43478.18943 
##           796           797           798           799           800 
##   41824.72749   43633.94488   43539.09147   39088.15879   42351.94917 
##           801           802           803           804           805 
##   27159.82679   31319.86273   42175.41450   40761.11232   34151.87310 
##           806           807           808           809           810 
##   42505.72823   43435.63247   36356.24656   30128.76943   37890.08718 
##           811           812           813           814           815 
##   39575.60692   22817.38488   34985.50515   36906.47708   39132.97860 
##           816           817           818           819           820 
##   32403.42349   37425.67271   35706.64794   30751.65891   40709.54214 
##           821           822           823           824           825 
##   38425.50681   26570.78124   36615.20466   39078.88784   32182.13309 
##           826           827           828           829           830 
##   36177.05847   27867.72108   18331.34290   31092.44940   34813.85248 
##           831           832           833           834           835 
##     209.46989   27969.60638   19039.13145   16575.36646   10809.70528 
##           836           837           838           839           840 
##   30455.37165   22816.00470   25492.58571   18733.94121   15389.34502 
##           841           842           843           844           845 
##   20792.35816   21868.09995   29216.64601   23688.44009    7612.83637 
##           846           847           848           849           850 
##   25487.57086   18969.99779   11710.56702   21038.33554   11028.00431 
##           851           852           853           854           855 
##   22377.42799   22518.33222   15726.77556   20647.23501   21917.55750 
##           856           857           858           859           860 
##   18511.77867   21146.38406   17445.26546   18330.57858   13554.97880 
##           861           862           863           864           865 
##     545.01638   15439.26727   18252.80480   19836.13555   13279.23212 
##           866           867           868           869           870 
##  -34734.42199   19617.38468    5398.74400   18744.11628   17929.88050 
##           871           872           873           874           875 
##   11563.74947   11669.57481   14415.12721   15577.51821   13648.20550 
##           876           877           878           879           880 
##   19134.02462   11340.99236   11600.90525   15687.55306   18214.41506 
##           881           882           883           884           885 
##    9964.34582   13642.89832   64692.91107   10242.48477    -388.96307 
##           886           887           888           889           890 
##    8509.23094   14862.82786  -13519.99690    8621.02763    6117.92331 
##           891           892           893           894           895 
##    5497.64265    9045.35993    2099.57956    8867.75539    2699.54050 
##           896           897           898           899           900 
##    6407.34718  -31954.04429   10307.30447    6991.47467    8464.09016 
##           901           902           903           904           905 
##    8842.90963   14721.88843    3106.20555    8557.57111    6731.42185 
##           906           907           908           909           910 
##    3320.23491    2396.28807    3618.72503    1436.34842    2740.43327 
##           911           912           913           914           915 
##    7803.66276    8405.47661     642.36807    7686.26156   -3820.30114 
##           916           917           918           919           920 
##    6535.91761   -6979.59342 -105087.22649  -39649.58423     957.35299 
##           921           922           923           924           925 
##    -952.98994    2411.97293   -2679.10672    -223.22183    6512.09351 
##           926           927           928           929           930 
##   -2137.93811   -3908.19242     -60.79842   -3274.92445    1731.10073 
##           931           932           933           934           935 
##    5251.02942  -15061.95966    4657.40563    -120.39597    2478.66409 
##           936           937           938           939           940 
##   -6574.60666  -20147.37503   -4230.08350   -5727.32063   -9866.48076 
##           941           942           943           944           945 
##   -1558.20885   -2150.91848   -5261.35216   -9673.18626   -1399.72344 
##           946           947           948           949           950 
##    2963.10978   -9293.22832   -6216.02396   -5798.15680   -5931.57697 
##           951           952           953           954           955 
##  -12684.40107   -4369.59222   -2772.34214  -16106.84860  -18821.08667 
##           956           957           958           959           960 
##   -6554.23161   -6402.51197   -4655.55761   -3149.18679  -12786.33149 
##           961           962           963           964           965 
##   -6330.13162   -9093.30607  -15671.68868  -14096.07692  -14986.37800 
##           966           967           968           969           970 
##   -7016.67779  -11093.29892  -11190.02004  -16882.70051   -6438.37955 
##           971           972           973           974           975 
##   -6691.32548   -7166.70529  -11004.45118   -9138.00028   -7256.91089 
##           976           977           978           979           980 
##  -17283.31937  -16856.90537  -11121.82937  -24997.90598   -8539.32398 
##           981           982           983           984           985 
##   -5140.73788  -15407.10532  -20119.05314  -22412.80619  -48468.69956 
##           986           987           988           989           990 
##  -12602.00150  -10979.47839  -24658.47531  -21111.27195  -29000.76594 
##           991           992           993           994           995 
##  -23178.90468  -16676.23852  -31383.72621  -18657.24824  -23403.86072 
##           996           997           998           999          1000 
##  -15307.33856  -24090.64596  -22860.42544  -18428.31537  -16734.64584 
##          1001          1002          1003          1004          1005 
##  -24357.14249  -25769.56247  -21425.83084  -19366.90136  -15863.99516 
##          1006          1007          1008          1009          1010 
##  -18389.90891  -16919.52445  -14374.48333  -15554.90391  -13941.19775 
##          1011          1012          1013          1014          1015 
##  -25946.16530  -25533.47369  -20660.44190  -16196.10651  -26163.98403 
##          1016          1017          1018          1019          1020 
##  -22824.13477  -17516.95660  -40518.69345  -19900.50484  -22138.47172 
##          1021          1022          1023          1024          1025 
##  -28077.07977  -25194.38864  -21604.54304  -22260.43149  -17838.78800 
##          1026          1027          1028          1029          1030 
##  -34525.33197  -22379.40657  -25360.87221  -25294.90879  -22583.81558 
##          1031          1032          1033          1034          1035 
##  -34430.36428  -24908.93161  -27415.41555  -27232.49206  -22965.85859 
##          1036          1037          1038          1039          1040 
##  -20213.90247  -27612.51199  -34082.67831  -27837.25991  -24206.70386 
##          1041          1042          1043          1044          1045 
##  -32567.53845  -28425.12510  -23518.76693  -23710.65656  -33136.62648 
##          1046          1047          1048          1049          1050 
##  -27289.38257  -35712.80840  -28204.23488  -28297.60635  -31629.34647 
##          1051          1052          1053          1054          1055 
##  -30909.80331  -36772.11807  -32625.76752  -31646.80636  -36475.02407 
##          1056          1057          1058          1059          1060 
##  -32155.91013  -31655.36951  -45521.49096  -31557.07959  -30430.73361 
##          1061          1062          1063          1064          1065 
##  -37529.11235  -32599.39281  -32681.38089  -31960.11469  -34341.96403 
##          1066          1067          1068          1069          1070 
##  -34578.74458  -45080.28773  -34760.33318  -43428.72398  -31538.88731 
##          1071          1072          1073          1074          1075 
##  -46511.44057  -38687.17843  -40442.69138  -33098.53504  -38499.96911 
##          1076          1077          1078          1079          1080 
##  -38937.30487  -35670.36742  -43213.64339  -34873.54254  -39878.34349 
##          1081          1082          1083          1084          1085 
##  -46431.18328  -43836.42720  -45126.47927  -46852.67082  -36916.62848 
##          1086          1087          1088          1089          1090 
##  -51733.17636  -41613.88607  -45192.59873  -42040.77454  -39928.51365 
##          1091          1092          1093          1094          1095 
##  -39408.05774  -39681.99575  -45949.29598  -41333.26013  -48294.35060 
##          1096          1097          1098          1099          1100 
##  -45031.43848  -42495.02569  -45211.63869  -41797.75100  -45371.15224 
##          1101          1102          1103          1104          1105 
##  -40583.65004  -52136.56832  -40071.65202  -53921.43077  -45782.65491 
##          1106          1107          1108          1109          1110 
##  -46469.57307  -46521.01827  -46069.84589  -53449.11493  -46271.83688 
##          1111          1112          1113          1114          1115 
##  -47312.78773  -42012.69651  -42915.31741  -48238.64323  -50805.49303 
##          1116          1117          1118          1119          1120 
##  -48119.36123  -47414.55111  -57482.84662  -47618.34471  -46465.99186 
##          1121          1122          1123          1124          1125 
##  -52408.40796  -46925.14624  -46306.28043  -49707.52326  -61710.55879 
##          1126          1127          1128          1129          1130 
##  -48702.98280  -53515.58706  -58467.01480  -74206.25476  -51386.42366 
##          1131          1132          1133          1134          1135 
##  -52872.29266  -50782.84120  -52778.18938  -48834.63955  -59349.94960 
##          1136          1137          1138          1139          1140 
##  -64348.38247  -50743.10159  -49670.38364  -53406.04100  -51715.33070 
##          1141          1142          1143          1144          1145 
##  -55738.32380  -53034.10077  -53265.71997  -53166.79992  -59995.08562 
##          1146          1147          1148          1149          1150 
##  -55279.18559  -54448.01783  -57911.85833  -73834.05745  -54254.26708 
##          1151          1152          1153          1154          1155 
##  -64229.35197  -86119.06083  -57057.17640  -55809.65503  -56997.03957 
##          1156          1157          1158          1159          1160 
##  -77650.95364  -60264.07259  -65760.27622  -57898.83357  -60790.98436 
##          1161          1162          1163          1164          1165 
##  -57147.00839  -56911.40212  -62634.90169  -59845.19840  -60691.22774 
##          1166          1167          1168          1169          1170 
##  -65812.04890  -57655.39293  -59346.53506  -61569.11461  -60559.51063 
##          1171          1172          1173          1174          1175 
##  -61962.44467  -69645.99761  -69151.39612  -64110.09567  -64553.08630 
##          1176          1177          1178          1179          1180 
##  -67172.93261  -66464.01544  -61311.57106  -64626.94324  -62854.99183 
##          1181          1182          1183          1184          1185 
##  -76918.19140  -66913.37378  -59806.90897  -69044.98430  -65751.84357 
##          1186          1187          1188          1189          1190 
##  -72979.80068  -74750.19888  -70714.64235  -68384.22209  -69937.73276 
##          1191          1192          1193          1194          1195 
##  -68953.91810  -68176.66076  -66874.58890  -66094.40367  -77398.61909 
##          1196          1197          1198          1199          1200 
##  -67900.44604  -70408.66775  -74172.98554  -72673.40320  -67926.31483 
##          1201          1202          1203          1204          1205 
##  -72027.21979  -70076.79491  -71331.66814  -73343.07290  -69584.40672 
##          1206          1207          1208          1209          1210 
##  -73074.23936  -77938.63982  -84132.43238  -74506.89932  -78200.99528 
##          1211          1212          1213          1214          1215 
##  -69634.70879  -77751.02133  -80584.91166  -75903.44504  -73096.63943 
##          1216          1217          1218          1219          1220 
##  -71456.12211  -98583.55812  -75184.25869  -73920.28124  -77846.05003 
##          1221          1222          1223          1224          1225 
##  -80176.66985  -79637.77358  -77351.34910  -81081.36015  -75147.10291 
##          1226          1227          1228          1229          1230 
##  -77391.32079  -73391.21316  -77465.18073  -77803.46010  -78775.48323 
##          1231          1232          1233          1234          1235 
##  -80562.47575  -80445.37658  -80674.54692  -92040.28879  -75653.62632 
##          1236          1237          1238          1239          1240 
##  -82659.64281  -78192.38929  -78862.53789  -82122.09416  -81525.46256 
##          1241          1242          1243          1244          1245 
##  -83682.21779  -99240.08865  -83394.05061  -91497.86836  -84595.78798 
##          1246          1247          1248          1249          1250 
##  -89056.77302  -90599.51143  -82677.35568  -94181.55197  -80431.56901 
##          1251          1252          1253          1254          1255 
##  -83616.67263  -89638.49778  -92108.44343  -87437.74002  -95003.94866 
##          1256          1257          1258          1259          1260 
##  -86509.36694  -87938.95598  -89233.48590  -84924.38948  -87648.13979 
##          1261          1262          1263          1264          1265 
##  -97763.06117  -87530.74829 -102106.14380 -140490.03013  -94436.73092 
##          1266          1267          1268          1269          1270 
##  -90713.46942  -86671.82130  -91477.24405  -94187.18379  -80205.69870 
##          1271          1272          1273          1274          1275 
##  -87053.40163 -100959.43919  -96315.54964 -108627.87701 -102381.93510 
##          1276          1277          1278          1279          1280 
## -107710.24166 -126354.74686 -119957.67279 -114365.64141 -110290.59923 
##          1281          1282          1283          1284          1285 
## -106339.63280 -103068.85260 -108293.21595  -91056.77528 -102821.19256 
##          1286          1287          1288          1289          1290 
## -126562.55232 -122742.50562 -105912.10906 -128020.39306 -106155.28770 
##          1291          1292          1293          1294          1295 
## -102779.85384 -107603.61547 -111934.55835 -109087.61361 -101025.77810 
##          1296          1297          1298          1299          1300 
## -101086.66306 -110139.33345 -155718.64742  -86422.81341 -105688.76830 
##          1301          1302          1303          1304          1305 
##  -83822.18729  -97956.33220 -105721.96132  -88279.99618  -90788.26169 
##          1306          1307          1308          1309          1310 
##  -96959.67654  -93857.59945    4447.90690  -93725.08938  -94363.64145 
##          1311          1312          1313          1314          1315 
##  -97334.25382  -90968.38289 -108567.61033  -96663.63300  -88610.91530 
##          1316          1317          1318          1319          1320 
##  -94775.98691 -102364.60841 -105283.40382 -117042.74583  -89086.38429 
##          1321          1322          1323          1324          1325 
## -108775.83746  -82594.71278  -93373.84325 -101024.72960 -102907.01796 
##          1326          1327          1328          1329          1330 
##  -89157.30471  -92259.61432 -105305.10426  -93365.49382  -98935.55329 
##          1331          1332          1333          1334          1335 
##  -83453.16048  -99990.50966  -86710.84157  -84063.50067  -89626.23023 
##          1336          1337          1338          1339          1340 
##  -80614.80896 -100675.55217  -96164.58302  -82895.83735  -82932.93024 
##          1341          1342          1343          1344          1345 
##  -73163.02024  -76940.68440  -87910.18019  -83181.24764  -85174.47329 
##          1346          1347          1348          1349          1350 
##  -82020.15058  -88312.73946  -83036.55659  -84366.06928  -82405.79095 
##          1351          1352          1353          1354          1355 
##  -83121.73411  -73908.88366  -80014.76708  -80213.79169  -70083.62900 
##          1356          1357          1358          1359          1360 
##  -87288.38931 -101334.97043  -96334.21298  -86169.14291  -60755.63315 
##          1361          1362          1363          1364          1365 
##  -84374.37951  -68633.90341  -87808.37059  -84492.66891  -84143.13155 
##          1366          1367          1368          1369          1370 
##  -79414.08603  -79657.25673  -80923.08416  -74637.86868  -74464.00802 
##          1371          1372          1373          1374          1375 
##  -76685.62229  -75333.60203  -69099.35793  -82051.92435  -80796.79252 
##          1376          1377          1378          1379          1380 
##  -70074.98663  -96703.17554  -77490.54683  -70314.02355  -71983.75835 
##          1381          1382          1383          1384          1385 
##  -72427.68471  -77876.47260  -85090.07222  -88287.21114  -66794.40977 
##          1386          1387          1388          1389          1390 
##  -81373.18919  -52121.95325  -59826.13129  -75523.47450  -73694.44761 
##          1391          1392          1393          1394          1395 
##  -74190.79227  -74072.57909  -84894.14430  -66461.57084  -66994.96721 
##          1396          1397          1398          1399          1400 
##  -77902.17055  -75699.28666  -96576.86104  -78613.13689  -72095.46653 
##          1401          1402          1403          1404          1405 
##  -70268.50430  -50697.93057  -63132.26511  -61280.97879  -79028.12180 
##          1406          1407          1408          1409          1410 
##  -54142.39893  -83932.93944  -46343.69334  -64008.77046  -49904.54875 
##          1411          1412          1413          1414          1415 
##  -50757.25276  -75817.55213  -58938.86338  -58567.28052  -57054.03387 
##          1416          1417          1418          1419          1420 
##  -54648.23850  -61211.56832  -57054.18812  -58515.05388  -67296.73801 
##          1421          1422          1423          1424          1425 
##  -46524.16605  -57622.91993  -62532.77355  -74518.90207  -52325.24366 
##          1426          1427          1428          1429          1430 
##  -32196.31863  -68961.44806  -60299.19716  -53195.27454  -48717.13414 
##          1431          1432          1433          1434          1435 
##  -37670.50033  -47262.50941  -38087.92891  -47469.03527  -35836.46803 
##          1436          1437          1438          1439          1440 
##  -51345.11285  -49079.14233  -53389.76584  -49424.81629  -54202.55279 
##          1441          1442          1443          1444          1445 
##  -50896.48150  -29833.31209  -41381.33398  -55658.62095  -39081.95534 
##          1446          1447          1448          1449          1450 
##  -44878.73195  -55053.00486  -50185.37840  -52925.03774  -39688.85191 
##          1451          1452          1453          1454          1455 
##  -46778.82345  -45149.95756  -40057.70181  -23954.23847  -47852.40060 
##          1456          1457          1458          1459          1460 
##  -37057.85688  -33759.75367  -37848.43888  -47705.25946  -32262.35640 
##          1461          1462          1463          1464          1465 
##  -40093.15315  -43157.17126  -29281.06766  -26450.18501  -34869.07738 
##          1466          1467          1468          1469          1470 
##  -40632.77130  -34667.20303  -18530.83868  -37777.22104  -31709.95932 
##          1471          1472          1473          1474          1475 
##  -20125.34386  -21758.99665  -33864.69757  -46950.59520  -18455.97886 
##          1476          1477          1478          1479          1480 
##  -29190.21554  -25876.55535  -25366.42091  -29792.46361  -35870.20936 
##          1481          1482          1483          1484          1485 
##  -22076.59618     944.01091  -34806.17225  -42122.58646  -20548.02404 
##          1486          1487          1488          1489          1490 
##  -13583.85556  -35347.97217  -35130.39456  -14725.74860  -18326.56124 
##          1491          1492          1493          1494          1495 
##  -16830.66381  -24676.34162   -8516.58208  -13965.31667  -15527.46863 
##          1496          1497          1498          1499          1500 
##  -10830.55821  -40735.74436  -51632.62346  -15981.05340  -16628.13245 
##          1501          1502          1503          1504          1505 
##  -21402.81568   -4606.73517    4770.33841  -14370.01199  -72509.77942 
##          1506          1507          1508          1509          1510 
##  -29212.05544     871.17090   -9407.75393   -4615.53678  -15350.44848 
##          1511          1512          1513          1514          1515 
##    -451.48185  -12805.73757  -15957.53402   -7940.45002  -13618.64509 
##          1516          1517          1518          1519          1520 
##  -13672.95381   13042.33515    2854.26047    5122.15478    4744.74549 
##          1521          1522          1523          1524          1525 
##   13663.97906   16529.97154    2350.37466  -21723.95359    5575.08632 
##          1526          1527          1528          1529          1530 
##  -10267.11714    4320.17684   12263.31712     136.50557    7507.65703 
##          1531          1532          1533          1534          1535 
##     135.36957   -7272.03403    2174.82822   20330.01583    9560.87820 
##          1536          1537          1538          1539          1540 
##   14778.22218   12050.81324   -4589.62313    3637.69439   -3863.90869 
##          1541          1542          1543          1544          1545 
##   19645.80338   18882.97453   33196.45014   16959.08333  -13962.83680 
##          1546          1547          1548          1549          1550 
##   12856.73352  -12828.92991   21384.50324   44357.95442   23600.94852 
##          1551          1552          1553          1554          1555 
##    6660.85474   12157.78290   22977.41394    1892.01985   34863.68637 
##          1556          1557          1558          1559          1560 
##   48000.46867   29408.97923   56694.52942   32336.70205   33659.81795 
##          1561          1562          1563          1564          1565 
##    9927.82452   31177.63388   17811.37277   20393.55935   -8090.38577 
##          1566          1567          1568          1569          1570 
##   -9570.73732   20032.29086   53705.89349   33259.38173   34310.63665 
##          1571          1572          1573          1574          1575 
##   25600.89600   16707.94217   46360.02109   35658.12559   42826.42754 
##          1576          1577          1578          1579          1580 
##   48346.53784   41094.77869   39437.83373   52827.26489   43265.38497 
##          1581          1582          1583          1584          1585 
##   60532.32585   44887.31471   66833.96048   54799.86100   69662.97384 
##          1586          1587          1588          1589          1590 
##   18296.93913   46317.50971   55083.53381   46511.27403   40098.24867 
##          1591          1592          1593          1594          1595 
##   47176.48205   50959.43107   53205.09989   59526.37166   45511.28843 
##          1596          1597          1598          1599          1600 
##   60339.67475   72625.77372   56855.37738   51817.48385   67601.02147 
##          1601          1602          1603          1604          1605 
##   64727.54500   62328.67643   50476.53908   70312.33026   40182.79668 
##          1606          1607          1608          1609          1610 
##   47778.97298   51594.81285   73174.82516   77069.73266   52979.84120 
##          1611          1612          1613          1614          1615 
##   73744.92090   50476.63896   74704.92611   51965.73559   65079.55481 
##          1616          1617          1618          1619          1620 
##   45040.74194   76759.51951   67898.68827   38543.88039   58997.11221 
##          1621          1622          1623          1624          1625 
##   60282.74263   92007.56963   71524.07758   76593.83893   92154.61592 
##          1626          1627          1628          1629          1630 
##   56504.07430   98600.51945   81248.86920   74965.77755   99878.15849 
##          1631          1632          1633          1634          1635 
##   82687.43781   81404.91112   67807.37294   94549.61807   92354.96489 
##          1636          1637          1638          1639          1640 
##  109333.42013   74210.24059   74375.99273   82118.74884   89540.83968 
##          1641          1642          1643          1644          1645 
##  103416.76333  116318.53013  113831.58308   96465.13210  102099.18255 
##          1646          1647          1648          1649          1650 
##   82364.40149   87392.55467   77372.96359  106409.39273   54004.09775 
##          1651          1652          1653          1654          1655 
##   92461.07795   89299.71464   70727.39508   73351.47234   64489.17517 
##          1656          1657          1658          1659          1660 
##   81649.68146   91845.83874   76217.90160   58877.22820   87814.66533 
##          1661          1662          1663          1664          1665 
##   34242.73425   76690.86129   40841.77406   85431.99539   89383.89616 
##          1666          1667          1668          1669          1670 
##   91423.18973   84588.76942   48331.23064   69984.66960   76492.14709 
##          1671          1672          1673          1674          1675 
##  106613.43941   68052.55408   17613.00696   83858.29896   69998.19561 
##          1676          1677          1678          1679          1680 
##   82932.15490   85345.94830   88090.17520   68074.56398   35237.24215 
##          1681          1682          1683          1684          1685 
##   79035.15685   91436.68970   72398.96189  109634.32760   71511.67289 
##          1686          1687          1688          1689          1690 
##   92413.30861   85926.77512   60566.94509   72890.82503   46109.64003 
##          1691          1692          1693          1694          1695 
##   88177.66866  117699.92825   56454.00287   70029.33214   68183.01863 
##          1696          1697          1698          1699          1700 
##   71168.24506   77695.26556   57017.60948   54018.72172   81062.47227 
##          1701          1702          1703          1704          1705 
##   79116.03833   83769.43650   65279.97190   75969.64091   53924.56268 
##          1706          1707          1708          1709          1710 
##    9919.53486   83854.60997   71364.94204   52569.17318   73917.07129 
##          1711          1712          1713          1714          1715 
##   16712.69751   67327.16141   73427.96457   85724.11744   25722.46727 
##          1716          1717          1718          1719          1720 
##   66276.38223   88884.77959   70587.18912   51108.89388   64371.11635 
##          1721          1722          1723          1724          1725 
##   35364.29371   10716.90123   84472.54826   35752.93083   31787.44739 
##          1726          1727          1728          1729          1730 
##   68167.12578   65255.88891   73514.61229   14900.79684   85060.32936 
##          1731          1732          1733          1734          1735 
##   94322.72834   67661.58531   45033.54488   63987.60223   68017.73339 
##          1736          1737          1738          1739          1740 
##   72804.37199   53660.70243   57412.65971   47910.03501   71655.75758 
##          1741          1742          1743          1744          1745 
##  -81281.17829   37818.02617   70775.25982   61184.48944   -6047.10240 
##          1746          1747          1748          1749          1750 
##   55188.03925   51930.02642   35335.40699   49287.23348   92853.87295 
##          1751          1752          1753          1754          1755 
##   69496.93639   64038.06277   41563.41800   59140.85033   65093.55511 
##          1756          1757          1758          1759          1760 
##   72489.81143   83185.33085   34785.04934   63555.33894  -40687.32760 
##          1761          1762          1763          1764          1765 
##   76553.26506   46660.10037   50747.99197   52124.91796   49250.28925 
##          1766          1767          1768          1769          1770 
##   89334.34714   70986.37146   84580.09047   47340.34938   70883.29077 
##          1771          1772          1773          1774          1775 
##   71043.33316   64283.48626   20210.37891   72287.70893   57327.15240 
##          1776          1777          1778          1779          1780 
##    7464.11694   60666.11974   49217.78468   51784.11842   43829.80784 
##          1781          1782          1783          1784          1785 
##   52259.69875   51832.25698   59978.53032   52241.94400   33403.79587 
##          1786          1787          1788          1789          1790 
##   31970.75430   63231.92841   38307.59547   44376.14191  -12422.33364 
##          1791          1792          1793          1794          1795 
##   65549.12030   23556.45191   38909.30512   41733.45010   26880.98636 
##          1796          1797          1798          1799          1800 
##  -13005.95393   53448.65216   40864.71170   52459.48318   76292.84342 
##          1801          1802          1803          1804          1805 
##   80997.57760   43464.19343   67649.52276   29860.73609   36146.55280 
##          1806          1807          1808          1809          1810 
##  -19900.83825   34779.56502   52106.98885   38478.10163  -25374.77640 
##          1811          1812          1813          1814          1815 
##   37045.20045   31193.72582   35893.70740   51679.00472   57585.15616 
##          1816          1817          1818          1819          1820 
##   50872.62743   52143.92386   77470.69642   40364.07802   44336.70592 
##          1821          1822          1823          1824          1825 
##   54097.99645   72954.80382   28115.12329   41961.49919   24196.17920 
##          1826          1827          1828          1829          1830 
##   52386.57484    7480.11070   14767.63500   23728.39319   27713.46737 
##          1831          1832          1833          1834          1835 
##   47844.41252   71107.87809   24380.45115   38058.93515  -17385.53401 
##          1836          1837          1838          1839          1840 
##   62701.49412   23134.38502    7857.41997   11980.84963   13181.68078 
##          1841          1842          1843          1844          1845 
##   58713.94333   36792.19892   66841.46147   15269.54486   50515.15289 
##          1846          1847          1848          1849          1850 
##    7473.74487  -66869.98299  -10272.56304   32433.81882   38727.80809 
##          1851          1852          1853          1854          1855 
##   50946.34338   24631.35183  -60735.45245   41429.16859    -295.62957 
##          1856          1857          1858          1859          1860 
##   24664.77746   36124.46582   41118.70042   37279.35572   28008.86856 
##          1861          1862          1863          1864          1865 
##   17994.46948   -4144.31856   20250.47534    6816.65253  -85624.27841 
##          1866          1867          1868          1869          1870 
##   40136.29126   27210.68379   16297.13205   20284.75101   33014.47353 
##          1871          1872          1873          1874          1875 
##   44435.19506   48530.45111   42775.90144   15969.93197  -30122.82736 
##          1876          1877          1878          1879          1880 
##   17478.62435   21378.62011   26851.48608   20387.90603    3880.79009 
##          1881          1882          1883          1884          1885 
##   28223.71357   28373.80319   28434.60728   27824.11602  -73901.81165 
##          1886          1887          1888          1889          1890 
##   29384.31611     875.66470   24542.52410   15134.54598   -9120.22453 
##          1891          1892          1893          1894          1895 
##   20383.82577    2654.56480   17458.13137    -383.55121   26993.76318 
##          1896          1897          1898          1899          1900 
##   -2682.47795  -13067.87265    -824.87095    6591.86474   18209.53604 
##          1901          1902          1903          1904          1905 
##   48067.87411   37007.45804    4164.82340   25857.51492   33592.18828 
##          1906          1907          1908          1909          1910 
##  -12928.33139   15148.47233   45438.18325    1834.15323   -7004.13859 
##          1911          1912          1913          1914          1915 
##   28119.82199   34855.36534   18175.72656  -20228.37932    3051.88719 
##          1916          1917          1918          1919          1920 
##   21192.99056    3275.05543   -7152.93019    4523.64891   18599.76371 
##          1921          1922          1923          1924          1925 
##   38260.37431    5155.31006    8473.41204    -744.16371    8022.05748 
##          1926          1927          1928          1929          1930 
##      87.66946  -11128.48575  -12951.48736   -8611.17860    6315.42620 
##          1931          1932          1933          1934          1935 
##  -11431.00174  -19098.71244    6523.97501     906.37791  -22659.44660 
##          1936          1937          1938          1939          1940 
##    9890.78497    8914.19623   18428.15586  -33515.19541   13930.30816 
##          1941          1942          1943          1944          1945 
##  -16065.48890   10715.27993    4890.17000    7641.70041  -15596.25872 
##          1946          1947          1948          1949          1950 
##    8648.71431    3357.81362   12530.22571    7304.11764  -34661.13890 
##          1951          1952          1953          1954          1955 
##   -7086.20904   17006.81043    9537.85732   -4576.02817   27359.70696 
##          1956          1957          1958          1959          1960 
##    3971.00306   20519.81761   12641.26833  -46958.03595    3951.66970 
##          1961          1962          1963          1964          1965 
##  -11806.60226  -31602.71460    8401.30991     622.37077  -33861.67928 
##          1966          1967          1968          1969          1970 
##   -8616.20870    7399.00433   -3596.68704  -31489.73469    1830.34283 
##          1971          1972          1973          1974          1975 
##  -25784.90000  -50697.01079   -6548.65974  -19154.88270  -21200.06263 
##          1976          1977          1978          1979          1980 
##  -10433.55234   32530.66223  -21111.94907    4372.90440  -56217.57181 
##          1981          1982          1983          1984          1985 
##   23611.70747  -13791.33913    1671.03767  -20991.53769  -27205.28097 
##          1986          1987          1988          1989          1990 
##    9535.95349    -933.49668   -7132.82592  -55722.93719  -16136.87120 
##          1991          1992          1993          1994          1995 
##   15824.08647   -5915.62760    6186.95622  -14103.92606    7403.83776 
##          1996          1997          1998          1999          2000 
##   -3273.71349   -2856.64567  -14840.12546  -14394.19648    5617.06412 
##          2001          2002          2003          2004          2005 
##  -11296.00281   10663.08430   -5292.25501  -15588.52423    1607.04035 
##          2006          2007          2008          2009          2010 
##   -5612.64597  -19476.68244   -2550.05023  -25971.04242   -1226.00847 
##          2011          2012          2013          2014          2015 
##  -15279.16296  -21071.54845  -80200.44887   -5779.04617  -16303.08078 
##          2016          2017          2018          2019          2020 
##   -9493.78260  -18094.35732  -18010.80005  -19717.72228  -44461.63468 
##          2021          2022          2023          2024          2025 
##   -8668.02045   10767.47728    -977.41599  -12869.70815  -28326.07458 
##          2026          2027          2028          2029          2030 
##  -17345.92083   -8778.35065  -23732.62727  -27584.04280   -4739.92123 
##          2031          2032          2033          2034          2035 
##  -28051.71417  -11093.16089  -53350.96397   12595.87536  -14959.02396 
##          2036          2037          2038          2039          2040 
##  -25434.35271  -22120.37053  -11234.96339  -13275.76806  -35589.35369 
##          2041          2042          2043          2044          2045 
##  -74890.40295  -28196.15259  -14707.68248  -24095.40315  -38124.83254 
##          2046          2047          2048          2049          2050 
##  -27976.58893  -40104.30009  -19438.47760  -53172.96513  -26892.52865 
##          2051          2052          2053 
##  -12600.30960  -28233.54226  -38305.87451

Creating an alternate model

We now try a linear regression model with fields V2, V3, V4, V5, V8 and V9.

fit2 <- lm(Target ~ V3+V4+V5+V6, data=train)
summary(fit2)
## 
## Call:
## lm(formula = Target ~ V3 + V4 + V5 + V6, data = train)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -730534 -115655   21453   83453  342453 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  4.075e+05  4.376e+03  93.141  < 2e-16 ***
## V3           5.134e+04  6.880e+03   7.463 1.25e-13 ***
## V4           1.483e-02  1.672e-03   8.867  < 2e-16 ***
## V5           8.100e+04  7.683e+03  10.543  < 2e-16 ***
## V6          -2.953e-03  2.140e-03  -1.380    0.168    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 158400 on 2048 degrees of freedom
## Multiple R-squared:  0.2534, Adjusted R-squared:  0.2519 
## F-statistic: 173.8 on 4 and 2048 DF,  p-value: < 2.2e-16

Since the adjusted R-squared values decrease, it is more efficient to use the first model.

Predicting Values

We add a new column to the Validation dataset with our predicted values.

new.Predictions <- predict(fit1,test)
results <- cbind(test$Target,new.Predictions)
colnames(results) <- c('Actual','Predicted')
results <- as.data.frame(results)
test$Predictions <- new.Predictions
head(results)
##   Actual Predicted
## 1 147000  168258.6
## 2 147000  183460.0
## 3 147000  161938.6
## 4 148000  165909.0
## 5 148000  167563.3
## 6 148000  166709.4
head(test)
##   Sno Target  V1 V2 V3 V4 V5     V6 V7     V8 V9 V10 V11 V12 V13 V14 V15
## 1   1 147000 865 39  0  0  0      0  2 400000  0   0   0   0   0   0   2
## 2   2 147000 871 54  0  0  1 900000  0      0  0   0   0   0   0   0   1
## 3   3 147000 829 37  0  0  0      0  2 348000  0   0   0   0   0   0   1
## 4   4 148000 846 31  0  0  0      0  0      0  0   0   0   0   0   0   1
## 5   5 148000 721 31  0  0  0      0  1 300000  0   0   0   0   0   0   3
## 6   6 148000 807 31  0  0  0      0  1 200000  0   0   0   0   0   0   3
##      V16 Predictions
## 1  25000    168258.6
## 2      0    183460.0
## 3      0    161938.6
## 4 217687    165909.0
## 5 145000    167563.3
## 6 105000    166709.4

We look at the multiple R-squared, adjusted R-Squared values and the F-tests to find that the accuracy of our model is about 92 percent.

Finding Error percentages

## mean((results$Actual - results$Predicted)^2)
SSE <- sum((results$Predicted - results$Actual)^2)
SST <- sum((mean(results$Actual)-results$Actual)^2)
R2 <- 1-SSE/SST
R2
## [1] 0.9275589

Using decision trees for predicting values

We can also use decision trees to predict the housing values. Let us see the tree we get for it.

library(rpart)
tree <- rpart(Target ~ .,method = 'class',data = train)
library(rpart.plot)
prp(tree)

predicted.val <- predict(tree,test)

Storing the saved predicted values into the csv file

We use the model we build using linear regression to get the final predicted values of housing prices and save it in the CSV file for further use.

new.Predictions <- round(new.Predictions,2)
test$Predictions <- new.Predictions
write.csv(test,file = 'week1Predictions.csv')