Problem 1

Find the equation of the regression line for the given points. Round any final values to the nearest hundredth, if necessary.( 5.6, 8.8 ), ( 6.3, 12.4 ), ( 7, 14.8 ), ( 7.7, 18.2 ), ( 8.4, 20.8 )

By some proofs I’ve long forgoten, the least squares solution can be determined by \(\hat { x } ={ ({ A }^{ T }A) }^{ -1 }{ A }^{ T }b\).

A <- c(rep(1, 5), 5.6, 6.3, 7, 7.7, 8.4)
b <- c(8.8, 12.4, 14.8, 18.2, 20.8)
dim(A) <- c(5,2)

solve(t(A) %*% A) %*% t(A) %*% b
##            [,1]
## [1,] -14.800000
## [2,]   4.257143
x <- (A[, 2])
df <- data.frame(X = x, y = b)
lm(y ~ x, data = df)
## 
## Call:
## lm(formula = y ~ x, data = df)
## 
## Coefficients:
## (Intercept)            x  
##     -14.800        4.257

We see this matches the solution given by the lm function

Problem 2

Find all local maxima, local minima, and saddle points for the function given below. Write your answer(s) in the form ( x, y, z ). Separate multiple points with a comma.

\(f(x,y)=24x-6x{ y }^{ 2 }-8{ y }^{ 3 }\)

\({ f }_{ x }=24-6{ y }^{ 2 }, { f }_{ xx }=0\)
\({ f }_{ y }=12xy-24{ y }^{ 2 },{ f }_{ yy }=12x-48{ y }\)
\({ f }_{ xy }=-12{ y }\)
\(24-6{ y }^{ 2 }=0,\quad 12xy-24{ y }^{ 2 }=0\)
\(y=-2,2\)
at \(y = 2\), so \(24x=96\)
at \(y = -2\), so \(-24x=96\)
\(x = -4,4\)
By the second derivative test since \({ f }_{ xx }\) is zero, the test will be positive, so (-4,-2,64) and (4,2,-64) are both saddle points

Problem 3

A grocery store sells two brands of a product, the “house” brand and a “name” brand. The manager estimates that if she sells the “house” brand for x dollars and the “name” brand for y dollars, she will be able to sell 81 -??? 21x + 17y units of the “house” brand and 40 + 11x -??? 23y units of the “name” brand

**Step 1*

We know \({ Q }_{ s }=81-21x+17y,{ Q }_{ n }=40+11x-23y\) so, \({ R }(x,y)=x(81-21x+17y)+y(40+11x-23y)\)

Step 2

\({ R }(2.3,4.1)=2.3(81-21*2.3+17*4.1)+4.1(40+11*2.3-23*4.1)\)
=$91.04 However since quantity can’t be negative the function is really \({ R }(2.3,4.1)=max(2.3(81-2*2.3+17),0)+max(4.1(40+11*2.3-23*4.1),0)\)

with yields $233.52

Problem 4

A company has a plant in Los Angeles and a plant in Denver. The firm is committed to produce a total of 96 units of a product each week. The total weekly cost is given by…

\(C(x,y)=1/6{ x }^{ 2 }+1/6{ y }^{ 2 }+7x+25y+700\) contrained by \(x+y=96\)
where \(x>=0\) and \(y>=0\)
\({ f }_{ x }=32x+7,\quad { f }_{ y }=32y+25\) So the one critical point occurs at \((-\frac { 7 }{ 32 } ,-\frac { 25 }{ 32 } )\) \(C(x,96-x)=16{ x }^{ 2 }+16(96-x)^{ 2 }+7x+25(96-x)+700\)
ignoring constants: \((x,96-x)=1/3{ x }^{ 2 }-32x+7x-25x\)
\({ (x,96-x) }^{ \prime }=\quad 2/3{ x }-50\)
\(x=75,y=21\) represents a critical point
\(f(75,21)=2761\)
\(f(96,0)=2908\)
\(f(0,96)=4636\)

Cost is minimized on that interval at (75,21)

Problem 5

\(\int _{ 2 }^{ 4 } \int _{ 2 }^{ 4 }{ { e }^{ 8x+3y } } dxdy\)
\(\frac { 1 }{ 8 } \int _{ 2 }^{ 4 }{ { e }^{ 8x+3y } } \overset { 4 }{ \underset { 2 }{ | } } dy\)
\(\frac { 1 }{ 8 } \int _{ 2 }^{ 4 }{ { e }^{ 8x }{ e }^{ 3y } } \overset { 4 }{ \underset { 2 }{ | } } dy\)
\(\frac { 1 }{ 8 } \int _{ 2 }^{ 4 }{ { e }^{ 3y } } ({ e }^{ 32 }-{ e }^{ 16 })dy\)
\(\frac { ({ e }^{ 32 }-{ e }^{ 16 }) }{ 24 } { { e }^{ 3y } }\overset { 4 }{ \underset { 2 }{ | } }\)
\(\frac { ({ e }^{ 32 }-{ e }^{ 16 }) }{ 24 } ({ e }^{ 12 }-{ e }^{ 6 })\)
5.341559510^{17}