library(reshape2)
prod_wage_melt <- prod_wage %>%
melt(id.vars = "Year",
measure.variables = c("Hourly_compensation", "Net_productivity"),
variable.name = "Prod_or_Compensation",
value.name = "Cumulative_Changes")
prod_wage_2_melt <- prod_wage_2 %>%
melt(id.vars = "Year",
measure.variables = c("Real_median_hourly_compensation", "Real_average_hourly_compensation", "Net_productivity"),
variable.name = "Prod_or_Compensation",
value.name = "Cumulative_Changes")
prod_wage_melt %>% str
## 'data.frame': 134 obs. of 3 variables:
## $ Year : int 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 ...
## $ Prod_or_Compensation: Factor w/ 2 levels "Hourly_compensation",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ Cumulative_Changes : num 0 6.3 10.5 11.8 15 20.8 23.5 28.7 33.9 37.1 ...
prod_wage_2_melt %>% str
## 'data.frame': 126 obs. of 3 variables:
## $ Year : int 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 ...
## $ Prod_or_Compensation: Factor w/ 3 levels "Real_median_hourly_compensation",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ Cumulative_Changes : num 0 -2 -0.5 0.4 1.3 2.5 1.9 1.1 -1.2 0.5 ...
library(ggplot2)
par(family = "HCR Dotum LVT")
main_title <- "Productivity and Compensation (1948-2014)"
x_lab <- "Year"
y_lab <- "Cumulative Changes since 1948 (%)"
var_lab <- c("Hourly Compensation", "Productivity")
legend_lab <- c("1948-1973\nProductivity : 96.7%\nHourly Compensation : 91.3%", "1973-2014\nProductivity : 72.2%\nHourly Compensation : 9.2%")
end_df <- prod_wage_melt %>% subset(Year == 2014)
y1995_df <- prod_wage_melt %>% subset(Year == 1995)
text_lab <- end_df %>%
`[`(, "Cumulative_Changes") %>%
format(digits = 1, nsmall = 1) %>%
paste("%", sep ="")
(g1 <- ggplot() +
geom_line(data = prod_wage_melt,
mapping = aes(x = Year,
y = Cumulative_Changes,
colour = Prod_or_Compensation),
size = 1.5,
show.legend = FALSE))
(g2 <- g1 +
geom_point(data = end_df, aes(x = Year,
y = Cumulative_Changes,
colour = Prod_or_Compensation),
size = 3,
show.legend = FALSE))
(g3 <- g2 +
geom_text(data = y1995_df, aes(x = Year,
y = Cumulative_Changes - c(10, 20),
label = var_lab)) +
geom_text(data = end_df, aes(x = Year,
y = Cumulative_Changes + 10,
label = text_lab)) +
annotate("text",
x = c(1950, 1975),
y = 200,
label = legend_lab,
hjust = 0))
(g4 <- g3 +
scale_colour_manual(values = c("blue", "cyan")) +
scale_x_continuous(breaks = c(1948, seq(1960, 2010, by = 10), 2014),
labels = c(1948, seq(1960, 2010, by = 10), 2014)) +
labs(title = main_title, x = x_lab, y = y_lab) +
theme_bw())
ggsave("../pics/Productivity_vs_Wages_ggplot.png", width = 8, height = 6)
par(family = "HCR Dotum LVT")
main_title_2 <- "Net Productivity, Average and Median Compensation (1973-2014)"
y_lab_2 <- "Cumulatove Changes since 1973 (%)"
var_lab_2 <- c("Real Median\n Hourly Compensation", "Real Average\n Hourly Compensation", "Net Productivity")
end_df_2 <- subset(prod_wage_2_melt, Year == 2014)
y2007.df <- subset(prod_wage_2_melt, Year == 2007)
(h1 <- ggplot() +
geom_line(data = prod_wage_2_melt, aes(x = Year,
y = Cumulative_Changes,
colour = Prod_or_Compensation),
size = 1.5,
show.legend = FALSE))
(h2 <- h1 +
geom_point(data = end_df_2, aes(x = Year,
y = Cumulative_Changes,
colour = Prod_or_Compensation),
size = 3,
show.legend = FALSE))
(h3 <- h2 +
geom_text(data = y2007.df, aes(x = Year,
y = Cumulative_Changes - c(5, 10, 10),
label = var_lab_2)) +
geom_text(data = end_df_2, aes(x = Year + 2,
y = Cumulative_Changes,
label = paste(Cumulative_Changes, "%", sep = ""))))
blues_pal <- brewer.pal(9, "Blues")
(h4 <- h3 +
# scale_color_manual(values = blues_pal[c(9, 6, 3)]) +
scale_colour_manual(values = c("blue", "deepskyblue", "cyan")) +
scale_x_continuous(breaks = c(1973, seq(1980, 2010, by = 10), 2014),
labels = c(1973, seq(1980, 2010, by = 10), 2014)) +
labs(title = main_title_2, x = x_lab, y = y_lab_2) +
theme_bw())
ggsave("../pics/Productivity_vs_Wages_2_ggplot.png", width = 8, height = 6)