library(pacman)
p_load(kirkegaard, haven, rms)
d = read_spss("Data 02072018.sav")
#SIRE gaps
GG_group_means(d, "g", "African_Am")

#just SIRE
rms::ols(g ~ Gender + African_Am + Asian_Am + Hisp_Latino + Native_Am + Pacific_Is + White + Other, data = d)
## Linear Regression Model
##  
##  rms::ols(formula = g ~ Gender + African_Am + Asian_Am + Hisp_Latino + 
##      Native_Am + Pacific_Is + White + Other, data = d)
##  
##                 Model Likelihood     Discrimination    
##                    Ratio Test           Indexes        
##  Obs     193    LR chi2     21.19    R2       0.104    
##  sigma0.8176    d.f.            8    R2 adj   0.065    
##  d.f.    184    Pr(> chi2) 0.0067    g        0.251    
##  
##  Residuals
##  
##      Min      1Q  Median      3Q     Max 
##  -1.5204 -0.5139 -0.1359  0.5064  2.4469 
##  
##  
##              Coef    S.E.   t     Pr(>|t|)
##  Intercept   -0.8730 0.4493 -1.94 0.0535  
##  Gender       0.1364 0.1356  1.01 0.3157  
##  African_Am   0.4835 0.3941  1.23 0.2214  
##  Asian_Am     1.2329 0.8323  1.48 0.1403  
##  Hisp_Latino  0.6035 0.4028  1.50 0.1358  
##  Native_Am    0.2306 0.3158  0.73 0.4663  
##  Pacific_Is   0.3748 0.8323  0.45 0.6530  
##  White        0.3816 0.1676  2.28 0.0239  
##  Other       -0.7618 0.8808 -0.86 0.3882  
## 
#just ancestry
rms::ols(g ~ Gender + Adj_Results_Africa + Adj_Results_Native + Adj_Results_Other, data = d)
## Frequencies of Missing Values Due to Each Variable
##                  g             Gender Adj_Results_Africa 
##                  0                  0                  1 
## Adj_Results_Native  Adj_Results_Other 
##                  1                  1 
## 
## Linear Regression Model
##  
##  rms::ols(formula = g ~ Gender + Adj_Results_Africa + Adj_Results_Native + 
##      Adj_Results_Other, data = d)
##  
##  
##                 Model Likelihood     Discrimination    
##                    Ratio Test           Indexes        
##  Obs     192    LR chi2     19.45    R2       0.096    
##  sigma0.8066    d.f.            4    R2 adj   0.077    
##  d.f.    187    Pr(> chi2) 0.0006    g        0.294    
##  
##  Residuals
##  
##      Min      1Q  Median      3Q     Max 
##  -1.6237 -0.5936 -0.1609  0.6156  2.1467 
##  
##  
##                     Coef    S.E.   t     Pr(>|t|)
##  Intercept           0.2503 0.2736  0.91 0.3614  
##  Gender              0.1477 0.1324  1.12 0.2661  
##  Adj_Results_Africa -0.6844 0.1871 -3.66 0.0003  
##  Adj_Results_Native -1.0037 0.2676 -3.75 0.0002  
##  Adj_Results_Other  -0.9497 0.7438 -1.28 0.2033  
## 
#combine with some left out SIRE
rms::ols(g ~ Gender + African_Am + Hisp_Latino + Adj_Results_Africa + Adj_Results_Native + Adj_Results_Other, data = d)
## Frequencies of Missing Values Due to Each Variable
##                  g             Gender         African_Am 
##                  0                  0                  0 
##        Hisp_Latino Adj_Results_Africa Adj_Results_Native 
##                  0                  1                  1 
##  Adj_Results_Other 
##                  1 
## 
## Linear Regression Model
##  
##  rms::ols(formula = g ~ Gender + African_Am + Hisp_Latino + Adj_Results_Africa + 
##      Adj_Results_Native + Adj_Results_Other, data = d)
##  
##  
##                 Model Likelihood     Discrimination    
##                    Ratio Test           Indexes        
##  Obs     192    LR chi2     24.35    R2       0.119    
##  sigma0.8007    d.f.            6    R2 adj   0.091    
##  d.f.    185    Pr(> chi2) 0.0005    g        0.320    
##  
##  Residuals
##  
##      Min      1Q  Median      3Q     Max 
##  -1.6350 -0.5849 -0.1254  0.5089  2.1601 
##  
##  
##                     Coef    S.E.   t     Pr(>|t|)
##  Intercept          -0.5329 0.4493 -1.19 0.2372  
##  Gender              0.1246 0.1322  0.94 0.3472  
##  African_Am          0.7479 0.3926  1.90 0.0583  
##  Hisp_Latino         0.8083 0.3695  2.19 0.0299  
##  Adj_Results_Africa -0.6336 0.2793 -2.27 0.0244  
##  Adj_Results_Native -0.9715 0.2681 -3.62 0.0004  
##  Adj_Results_Other  -0.9599 0.7397 -1.30 0.1960  
## 
#all
rms::ols(g ~ Gender + African_Am + Hisp_Latino + Native_Am + White + Adj_Results_Africa + Adj_Results_Native + Adj_Results_Other, data = d)
## Frequencies of Missing Values Due to Each Variable
##                  g             Gender         African_Am 
##                  0                  0                  0 
##        Hisp_Latino          Native_Am              White 
##                  0                  0                  0 
## Adj_Results_Africa Adj_Results_Native  Adj_Results_Other 
##                  1                  1                  1 
## 
## Linear Regression Model
##  
##  rms::ols(formula = g ~ Gender + African_Am + Hisp_Latino + Native_Am + 
##      White + Adj_Results_Africa + Adj_Results_Native + Adj_Results_Other, 
##      data = d)
##  
##  
##                 Model Likelihood     Discrimination    
##                    Ratio Test           Indexes        
##  Obs     192    LR chi2     26.71    R2       0.130    
##  sigma0.8001    d.f.            8    R2 adj   0.092    
##  d.f.    183    Pr(> chi2) 0.0008    g        0.330    
##  
##  Residuals
##  
##      Min      1Q  Median      3Q     Max 
##  -1.5671 -0.5545 -0.1073  0.5165  2.2590 
##  
##  
##                     Coef    S.E.   t     Pr(>|t|)
##  Intercept          -0.4025 0.4666 -0.86 0.3894  
##  Gender              0.0978 0.1333  0.73 0.4640  
##  African_Am          0.5582 0.4126  1.35 0.1777  
##  Hisp_Latino         0.6172 0.3917  1.58 0.1169  
##  Native_Am           0.2869 0.2953  0.97 0.3325  
##  White               0.1864 0.1792  1.04 0.2996  
##  Adj_Results_Africa -0.5155 0.3006 -1.71 0.0881  
##  Adj_Results_Native -0.9074 0.2918 -3.11 0.0022  
##  Adj_Results_Other  -0.8293 0.7452 -1.11 0.2672  
##