x = c(5.6, 6.3, 7, 7.7, 8.4)
y = c(8.8, 12.4, 14.8, 18.2, 20.8)
line <- lm(y ~ x)
summary(line)
##
## Call:
## lm(formula = y ~ x)
##
## Residuals:
## 1 2 3 4 5
## -0.24 0.38 -0.20 0.22 -0.16
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -14.8000 1.0365 -14.28 0.000744 ***
## x 4.2571 0.1466 29.04 8.97e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3246 on 3 degrees of freedom
## Multiple R-squared: 0.9965, Adjusted R-squared: 0.9953
## F-statistic: 843.1 on 1 and 3 DF, p-value: 8.971e-05
Linear equation for the line
\[ y = -14.80 + 4.26x \]
\[ f(x,y) = 24x- 6xy^2 - 8y^3 \]
the partial derivative becomes:
\[ f'(x) = 24 - 6y^2\] \[ f'(y) = -12xy - 24(y)^2 \] solving for f’(x)
\[ 24 - (6 * y^2) = 0 \] \[ 24 = (6 * y^2) \]
y = 2 and -2
solving for f’(y)
\[ -12xy - 24(y)^2 = 0 ..... equation I \]
substituting y = 2 and y = -2 in equation I
f’(2) = -4 f’(-2) = 4 The critical points are (-4,2) and (4,-2)
Using second derivative test:
\[ D(x,y)=fxx(x,y)fyy(x,y)−fxy(x,y)^2 \]
\[ fxx(x,y) = 0 \]
\[ fyy(x,y) = -12x-48y \]
\[ fxy(x,y) = -12y \]
\[ D(x,y) = (0) * (-12x - 48y) -(-12y)2 = -144y^2 \]
at (4,−2):
D = -576 < 0
fyy(x,y) = -12x - 48y = 48
at(-4,2):
D = -576 < 0
fyy(x,y) = -12x - 48y = 48
so (4,-2) and (-4,2) are saddle points.
Revenue = (Units Sold) * (sales price)
R(x,y) = x(81 - 21x + 17y) + y(40 + 11x − 23y)
fun<- function(x,y){-21*(x^2) - 23*(y^2) + 81*x + 40*y + 28*x*y}
revenue <- fun(2.30, 4.10)
print(paste0("Revenue:", round(revenue, 2),"USD"))
## [1] "Revenue:116.62USD"
Total number of units produced is 96. x from LA and y from Denver.
x + y = 96
y = 96 - x
substituting y in total weekly cost :
C(x,y) = (1/6)x^2 + (1/6)y^2 + 7x + 25y + 700
\[ C(x) = (1/6) * (x^2) + (1/6) * (96 - x)^2 + 7 * x + 25 * (96 - x) + 700 \]
solving above equation gives
\[ C(x) = (1/3) * (x^2) - 50 * x + 4636 \]
Taking first derivative
C’(x) = (2/3)x - 50
x = 75
x + y = 96
75 + y = 96
y = 21
The critical point is (75,21)
Therefore 75 units should be produced in Los Angeles, and 21 units should be produced in Denver to minimize the costs.
\[\iint_R (e^(8x + 3y))~dA\] \[2 \le x \le 4\] \[2 \le y \le 4\]
Solution:
\[ I = \int_2^{4} \int_2^{4} (e^(8x + 3y))~dA\]
\[ I = \int_2^{4} \int_2^{4} (e^(8x) e^ (3y))~dx.dy\]
\[ I = \int_2^{4} (e^(8x)~ dx \int_2^{4} e^ (3y))~dy\] \[ I = (1/8) (e^(8x)|^4_2 * (1/3) e^(3y)|^4_2 \]
\[ I = (1/24) (e^(8x)|^4_2 * e^(3y)|^4_2 \]
\[ A = (1/24) (e^(32) - e^(16))(e^(12) - e^(6)) \]
Solving further by R
(1/24)*(exp(32)-exp(16))*((exp(12) - exp(6)))
## [1] 5.341559e+17