Radar Plots
op <- par(no.readonly = TRUE)
par(mfrow = c(1,2),xpd = TRUE,pty = "s",mar = c(1,1,1,1))
mNames <- names(cp$cpuElapsedTimes)
classRanks <- c(pr$minMaxMetrics$BMAE[1],pr$minMaxMetrics$KAPPA[2],pr$minMaxMetrics$Kendall[2],pr$minMaxMetrics$ACC[2],pr$minMaxMetrics$SEN[2],pr$minMaxMetrics$AUC[2],min(cp$cpuElapsedTimes))
classRanks <- rbind(classRanks,c(pr$minMaxMetrics$BMAE[2],0,0,0,0,0,max(cp$cpuElapsedTimes)))
classRanks <- as.data.frame(rbind(classRanks,cbind(t(pr$metrics[c("BMAE","KAPPA","Kendall","ACC","SEN","AUC"),mNames]),cp$cpuElapsedTimes)))
colnames(classRanks) <- c("BMAE","KAPPA","Kendall","ACC","SEN","AUC","CPU")
classRanks$BMAE <- -classRanks$BMAE
classRanks$CPU <- -classRanks$CPU
colors_border = c( rgb(1.0,0.0,0.0,1.0), rgb(0.0,1.0,0.0,1.0) , rgb(0.0,0.0,1.0,1.0), rgb(0.2,0.2,0.0,1.0), rgb(0.0,1.0,1.0,1.0), rgb(1.0,0.0,1.0,1.0), rgb(0.0,0.0,0.0,1.0), rgb(1.0,1.0,0.0,1.0) )
colors_in = c( rgb(1.0,0.0,0.0,0.05), rgb(0.0,1.0,0.0,0.05) , rgb(0.0,0.0,1.0,0.05),rgb(1.0,1.0,0.0,0.05), rgb(0.0,1.0,1.0,0.05) , rgb(1.0,0.0,1.0,0.05), rgb(0.0,0.0,0.0,0.05), rgb(1.0,1.0,0.0,0.05) )
fmsb::radarchart(classRanks,axistype = 0,maxmin = T,pcol = colors_border,pfcol = colors_in,plwd = c(6,2,2,2,2,2,2),plty = 1, cglcol = "grey", cglty = 1,axislabcol = "black",cglwd = 0.8, vlcex = 0.5 ,title = "Prediction Model")
legend("topleft",legend = rownames(classRanks[-c(1,2),]),bty = "n",pch = 20,col = colors_in,text.col = colors_border,cex = 0.5,pt.cex = 2)
filnames <- c("BSWiMS","LASSO","RF.ref","F.Test","Kendall","mRMR")
filterRanks <- c(pr$minMaxMetrics$BMAE[1],pr$minMaxMetrics$KAPPA[2],pr$minMaxMetrics$Kendall[2],pr$minMaxMetrics$ACC[2],pr$minMaxMetrics$SEN[2],pr$minMaxMetrics$AUC[2],max(cp$jaccard),min(cp$featsize));
filterRanks <- rbind(filterRanks,c(pr$minMaxMetrics$BMAE[2],0,0,0,0,0,min(cp$jaccard),max(cp$featsize)));
filterRanks <- as.data.frame(rbind(filterRanks,cbind(t(pr$metrics_filter[c("BMAE","KAPPA","Kendall","ACC","SEN","AUC"),filnames]),cp$jaccard[filnames],cp$featsize[filnames])));
colnames(filterRanks) <- c("BMAE","KAPPA","Kendall","ACC","SEN","AUC","Jaccard","SIZE")
filterRanks$BMAE <- -filterRanks$BMAE
filterRanks$SIZE <- -filterRanks$SIZE
colors_border = c( rgb(1.0,0.0,0.0,1.0), rgb(0.0,1.0,0.0,1.0) , rgb(0.0,0.0,1.0,1.0), rgb(0.2,0.2,0.0,1.0), rgb(0.0,1.0,1.0,1.0), rgb(1.0,0.0,1.0,1.0), rgb(0.0,0.0,0.0,1.0) )
colors_in = c( rgb(1.0,0.0,0.0,0.05), rgb(0.0,1.0,0.0,0.05) , rgb(0.0,0.0,1.0,0.05),rgb(1.0,1.0,0.0,0.05), rgb(0.0,1.0,1.0,0.05) , rgb(1.0,0.0,1.0,0.05), rgb(0.0,0.0,0.0,0.05) )
fmsb::radarchart(filterRanks,axistype = 0,maxmin = T,pcol = colors_border,pfcol = colors_in,plwd = c(6,2,2,2,2,2,2),plty = 1, cglcol = "grey", cglty = 1,axislabcol = "black",cglwd = 0.8, vlcex = 0.6,title = "Filter Method" )
legend("topleft",legend = rownames(filterRanks[-c(1,2),]),bty = "n",pch = 20,col = colors_in,text.col = colors_border,cex = 0.5,pt.cex = 2)

par(mfrow = c(1,1))
par(op)
Features Analysis
pander::pander(summary(bmodel),caption = "Model",round = 3)
coefficients:
Table continues below
| STDJSW |
0.1578 |
1.145 |
1.171 |
1.197 |
0.5999 |
| MtoLDiff |
0.1812 |
1.168 |
1.199 |
1.23 |
0.6009 |
| CVJSW |
0.2191 |
1.207 |
1.245 |
1.284 |
0.6175 |
| stdLJSW |
-0.2358 |
0.7579 |
0.79 |
0.8235 |
0.5702 |
| LJSW725 |
-0.0326 |
0.9626 |
0.9679 |
0.9733 |
0.5461 |
| lCV |
0.07686 |
1.067 |
1.08 |
1.093 |
0.4513 |
| MaxCV |
0.08357 |
1.071 |
1.087 |
1.104 |
0.5749 |
| meanLJSW |
-0.1406 |
0.8443 |
0.8688 |
0.8941 |
0.5119 |
| BMI |
0.03231 |
1.025 |
1.033 |
1.041 |
0.5742 |
| LJSW700 |
-0.09316 |
0.8903 |
0.911 |
0.9322 |
0.5639 |
| LJSW750 |
-0.03963 |
0.9519 |
0.9611 |
0.9704 |
0.5292 |
| JSW175 |
-0.03729 |
0.9538 |
0.9634 |
0.9731 |
0.59 |
| AGE |
0.01564 |
1.011 |
1.016 |
1.02 |
0.582 |
| LateralSlope |
0.07017 |
1.052 |
1.073 |
1.094 |
0.5568 |
| DiffSlope |
-0.04718 |
0.9394 |
0.9539 |
0.9687 |
0.5107 |
| JSW200 |
-0.006328 |
0.9916 |
0.9937 |
0.9958 |
0.5735 |
| WEIGHT |
0.00562 |
1.004 |
1.006 |
1.008 |
0.5687 |
| LJSW825 |
0.09117 |
1.057 |
1.095 |
1.136 |
0.488 |
Table continues below
| STDJSW |
0.5582 |
0.6217 |
0.6295 |
0.5594 |
0.681 |
| MtoLDiff |
0.5823 |
0.6439 |
0.6293 |
0.588 |
0.6797 |
| CVJSW |
0.6555 |
0.6709 |
0.6604 |
0.651 |
0.7049 |
| stdLJSW |
0.642 |
0.6604 |
0.5593 |
0.673 |
0.7018 |
| LJSW725 |
0.6157 |
0.6433 |
0.5376 |
0.6423 |
0.6835 |
| lCV |
0.5965 |
0.6316 |
0.4773 |
0.6476 |
0.6872 |
| MaxCV |
0.5876 |
0.6057 |
0.6101 |
0.6155 |
0.6512 |
| meanLJSW |
0.6266 |
0.6473 |
0.5302 |
0.6618 |
0.6813 |
| BMI |
0.644 |
0.6709 |
0.5973 |
0.6993 |
0.7049 |
| LJSW700 |
0.661 |
0.6787 |
0.5703 |
0.6897 |
0.712 |
| LJSW750 |
0.597 |
0.6168 |
0.5285 |
0.6561 |
0.6747 |
| JSW175 |
0.5616 |
0.6028 |
0.6071 |
0.6228 |
0.6397 |
| AGE |
0.6465 |
0.6709 |
0.5854 |
0.6913 |
0.7049 |
| LateralSlope |
0.6015 |
0.6121 |
0.5477 |
0.6393 |
0.6658 |
| DiffSlope |
0.5966 |
0.6013 |
0.5012 |
0.6265 |
0.6409 |
| JSW200 |
0.5668 |
0.5944 |
0.6064 |
0.628 |
0.6429 |
| WEIGHT |
0.6271 |
0.6439 |
0.5793 |
0.6654 |
0.6797 |
| LJSW825 |
0.6385 |
0.6484 |
0.4981 |
0.6735 |
0.6824 |
| STDJSW |
0.1459 |
0.6163 |
16.43 |
13.24 |
0.2676 |
| MtoLDiff |
0.1374 |
0.554 |
15.9 |
11.63 |
0.2817 |
| CVJSW |
0.1364 |
0.6175 |
15.87 |
13.15 |
0.2817 |
| stdLJSW |
0.05271 |
0.48 |
9.093 |
9.966 |
0.2817 |
| LJSW725 |
0.04506 |
0.3425 |
8.469 |
7.018 |
0.2676 |
| lCV |
0.04301 |
0.3859 |
8.406 |
8.008 |
0.08451 |
| MaxCV |
0.04164 |
0.3049 |
8.037 |
6.281 |
0.1972 |
| meanLJSW |
0.03761 |
0.3666 |
7.814 |
7.503 |
0.1127 |
| BMI |
0.03254 |
0.4073 |
7.25 |
8.39 |
0.2817 |
| LJSW700 |
0.03083 |
0.37 |
7.245 |
7.588 |
0.07042 |
| LJSW750 |
0.03111 |
0.3301 |
7.188 |
6.735 |
0.1127 |
| JSW175 |
0.02742 |
0.236 |
6.628 |
4.791 |
0.1408 |
| AGE |
0.0261 |
0.2685 |
6.584 |
5.453 |
0.2817 |
| LateralSlope |
0.02534 |
0.274 |
6.001 |
5.591 |
0.1972 |
| DiffSlope |
0.02479 |
0.2613 |
5.944 |
5.303 |
0.1127 |
| JSW200 |
0.01988 |
0.2164 |
5.769 |
4.38 |
0.02817 |
| WEIGHT |
0.01783 |
0.3014 |
5.291 |
6.135 |
0.2817 |
| LJSW825 |
0.01538 |
0.1637 |
4.857 |
3.305 |
0.09859 |
- Accuracy: 0.662
- tAUC: 0.7147
- sensitivity: 0.6295
- specificity: 0.8
bootstrap:
coefficients:
Table continues below
| MtoLDiff |
0.1457 |
1.133 |
1.157 |
1.181 |
0.6054 |
| CVJSW |
0.2034 |
1.191 |
1.226 |
1.261 |
0.6482 |
| STDJSW |
0.1387 |
1.126 |
1.149 |
1.172 |
0.6082 |
| LJSW725 |
-0.03076 |
0.9648 |
0.9697 |
0.9747 |
0.5675 |
| LJSW700 |
-0.2717 |
0.7268 |
0.7621 |
0.799 |
0.5866 |
| meanLJSW |
-0.2569 |
0.7361 |
0.7734 |
0.8126 |
0.5439 |
| LJSW750 |
-0.06743 |
0.9233 |
0.9348 |
0.9465 |
0.5442 |
| MaxCV |
0.0509 |
1.041 |
1.052 |
1.063 |
0.5809 |
| stdLJSW |
-0.0395 |
0.9542 |
0.9613 |
0.9684 |
0.5558 |
| AGE |
0.01691 |
1.011 |
1.017 |
1.023 |
0.5779 |
| lCV |
0.01352 |
1.01 |
1.014 |
1.018 |
0.4695 |
| DiffSlope |
-0.05237 |
0.9315 |
0.949 |
0.9668 |
0.5252 |
| BMI |
0.0267 |
1.017 |
1.027 |
1.038 |
0.5477 |
| LJSW825 |
0.01982 |
1.012 |
1.02 |
1.028 |
0.5079 |
| LatIntersept |
0.1393 |
1.089 |
1.149 |
1.213 |
0.5293 |
| JSW225 |
-0.01162 |
0.9838 |
0.9884 |
0.9931 |
0.6057 |
| JSW200 |
-0.04373 |
0.9418 |
0.9572 |
0.9729 |
0.601 |
| LJSW800 |
0.142 |
1.079 |
1.153 |
1.232 |
0.5251 |
| LatCurvature |
-0.06396 |
0.9084 |
0.938 |
0.9687 |
0.5407 |
| JSW275 |
-0.005035 |
0.9921 |
0.995 |
0.9978 |
0.6051 |
Table continues below
| MtoLDiff |
0.5804 |
0.6723 |
0.6249 |
0.5851 |
0.6943 |
| CVJSW |
0.6402 |
0.6929 |
0.6679 |
0.6393 |
0.717 |
| STDJSW |
0.5903 |
0.6591 |
0.6253 |
0.5983 |
0.686 |
| LJSW725 |
0.6217 |
0.6675 |
0.5636 |
0.6392 |
0.6944 |
| LJSW700 |
0.6649 |
0.6929 |
0.5893 |
0.6855 |
0.717 |
| meanLJSW |
0.632 |
0.6723 |
0.5546 |
0.6522 |
0.6943 |
| LJSW750 |
0.6261 |
0.6599 |
0.5457 |
0.6485 |
0.6853 |
| MaxCV |
0.5989 |
0.6216 |
0.6028 |
0.6196 |
0.6477 |
| stdLJSW |
0.6258 |
0.6474 |
0.5483 |
0.6492 |
0.6796 |
| AGE |
0.677 |
0.6929 |
0.5804 |
0.7038 |
0.717 |
| lCV |
0.6311 |
0.6489 |
0.4843 |
0.659 |
0.6829 |
| DiffSlope |
0.619 |
0.625 |
0.5264 |
0.6412 |
0.652 |
| BMI |
0.6852 |
0.6929 |
0.5576 |
0.7105 |
0.717 |
| LJSW825 |
0.662 |
0.666 |
0.5189 |
0.6825 |
0.6887 |
| LatIntersept |
0.6632 |
0.675 |
0.5368 |
0.6833 |
0.6966 |
| JSW225 |
0.6051 |
0.6253 |
0.6244 |
0.6399 |
0.6504 |
| JSW200 |
0.637 |
0.6394 |
0.6262 |
0.6571 |
0.6634 |
| LJSW800 |
0.6873 |
0.6929 |
0.5315 |
0.7109 |
0.717 |
| LatCurvature |
0.6517 |
0.6634 |
0.5495 |
0.6757 |
0.6877 |
| JSW275 |
0.6687 |
0.6735 |
0.6175 |
0.6966 |
0.6969 |
| MtoLDiff |
0.1552 |
0.6581 |
15.66 |
12.8 |
0.2817 |
| CVJSW |
0.1312 |
0.6454 |
14.43 |
12.49 |
0.2817 |
| STDJSW |
0.107 |
0.5572 |
12.45 |
10.8 |
0.2676 |
| LJSW725 |
0.06761 |
0.4612 |
9.819 |
8.697 |
0.07042 |
| LJSW700 |
0.04927 |
0.4902 |
8.418 |
9.239 |
0.2817 |
| meanLJSW |
0.04804 |
0.4412 |
8.163 |
8.264 |
0.2817 |
| LJSW750 |
0.04706 |
0.3216 |
8.147 |
5.996 |
0.1549 |
| MaxCV |
0.04249 |
0.3592 |
7.836 |
6.813 |
0.1549 |
| stdLJSW |
0.0453 |
0.4187 |
7.594 |
7.846 |
0.05634 |
| AGE |
0.02533 |
0.3268 |
5.933 |
6.041 |
0.2817 |
| lCV |
0.02456 |
0.3253 |
5.891 |
6.143 |
0.05634 |
| DiffSlope |
0.02005 |
0.2684 |
5.425 |
4.943 |
0.169 |
| BMI |
0.0187 |
0.3147 |
5.024 |
5.826 |
0.2817 |
| LJSW825 |
0.01929 |
0.2003 |
4.929 |
3.68 |
0.02817 |
| LatIntersept |
0.01853 |
0.221 |
4.899 |
4.063 |
0.1831 |
| JSW225 |
0.01897 |
0.2766 |
4.724 |
5.106 |
0.05634 |
| JSW200 |
0.01854 |
0.3062 |
4.478 |
5.673 |
0.2254 |
| LJSW800 |
0.01393 |
0.2829 |
4.099 |
5.215 |
0.2817 |
| LatCurvature |
0.01192 |
0.239 |
3.78 |
4.396 |
0.2676 |
| JSW275 |
0.007638 |
0.2661 |
3.395 |
4.895 |
0.02817 |
- Accuracy: 0.6891
- tAUC: 0.7194
- sensitivity: 0.628
- specificity: 0.8108
bootstrap:
coefficients:
Table continues below
| STDJSW |
0.3731 |
1.378 |
1.452 |
1.531 |
0.8173 |
| MtoLDiff |
0.3707 |
1.375 |
1.449 |
1.527 |
0.8226 |
| CVJSW |
0.3344 |
1.333 |
1.397 |
1.465 |
0.8742 |
| MaxCV |
0.1559 |
1.143 |
1.169 |
1.195 |
0.7846 |
| LJSW750 |
-0.3353 |
0.682 |
0.7151 |
0.7497 |
0.5503 |
| MeanJSW |
-0.3172 |
0.6963 |
0.7282 |
0.7615 |
0.6691 |
| LJSW725 |
-0.06029 |
0.9335 |
0.9415 |
0.9495 |
0.5715 |
| DiffSlope |
-0.1177 |
0.8706 |
0.889 |
0.9078 |
0.534 |
| JointSlope |
0.1657 |
1.15 |
1.18 |
1.211 |
0.7327 |
| JSW200 |
-0.005371 |
0.9936 |
0.9946 |
0.9957 |
0.8026 |
| meanMJSW |
-0.06877 |
0.9222 |
0.9335 |
0.945 |
0.755 |
| JSW150 |
-0.05334 |
0.9388 |
0.9481 |
0.9574 |
0.7874 |
| mCV |
0.1557 |
1.129 |
1.168 |
1.209 |
0.7188 |
| lCV |
-0.007077 |
0.9915 |
0.9929 |
0.9944 |
0.5318 |
| LatSlope |
0.1468 |
1.111 |
1.158 |
1.207 |
0.5975 |
| MCMJSW |
-0.1648 |
0.8054 |
0.8481 |
0.8931 |
0.7774 |
| AGE |
0.01994 |
1.013 |
1.02 |
1.027 |
0.615 |
| TPCFDS |
0.1339 |
1.086 |
1.143 |
1.204 |
0.5137 |
| LatIntersept |
0.008849 |
1.005 |
1.009 |
1.013 |
0.5345 |
| XMJSW |
-0.08443 |
0.8818 |
0.919 |
0.9578 |
0.5089 |
Table continues below
| STDJSW |
0.7605 |
0.8981 |
0.7982 |
0.7561 |
0.8976 |
| MtoLDiff |
0.7568 |
0.8917 |
0.8134 |
0.7434 |
0.8874 |
| CVJSW |
0.8221 |
0.8968 |
0.8577 |
0.8217 |
0.893 |
| MaxCV |
0.7417 |
0.8561 |
0.7492 |
0.7344 |
0.8364 |
| LJSW750 |
0.8182 |
0.9002 |
0.5392 |
0.8 |
0.8999 |
| MeanJSW |
0.8377 |
0.892 |
0.6693 |
0.8328 |
0.8877 |
| LJSW725 |
0.8385 |
0.8926 |
0.5661 |
0.8317 |
0.892 |
| DiffSlope |
0.826 |
0.8561 |
0.5254 |
0.8084 |
0.8364 |
| JointSlope |
0.871 |
0.8858 |
0.7387 |
0.8597 |
0.88 |
| JSW200 |
0.8254 |
0.8485 |
0.7845 |
0.8079 |
0.8327 |
| meanMJSW |
0.8524 |
0.8581 |
0.751 |
0.8273 |
0.8414 |
| JSW150 |
0.8898 |
0.8926 |
0.7836 |
0.8798 |
0.8923 |
| mCV |
0.872 |
0.8917 |
0.6937 |
0.8669 |
0.8874 |
| lCV |
0.8519 |
0.8652 |
0.4696 |
0.8436 |
0.8623 |
| LatSlope |
0.8909 |
0.8968 |
0.5994 |
0.8914 |
0.893 |
| MCMJSW |
0.8923 |
0.8968 |
0.7885 |
0.8859 |
0.893 |
| AGE |
0.8963 |
0.8968 |
0.6255 |
0.8895 |
0.893 |
| TPCFDS |
0.8848 |
0.893 |
0.5081 |
0.881 |
0.8891 |
| LatIntersept |
0.8497 |
0.8555 |
0.5209 |
0.8354 |
0.837 |
| XMJSW |
0.8835 |
0.8889 |
0.5202 |
0.8785 |
0.8852 |
| STDJSW |
0.3266 |
1.403 |
27.58 |
38.07 |
0.2817 |
| MtoLDiff |
0.3263 |
1.366 |
27.32 |
36.01 |
0.2676 |
| CVJSW |
0.2802 |
1.469 |
24.94 |
41.94 |
0.2817 |
| MaxCV |
0.2225 |
1.113 |
21.54 |
26.17 |
0.1549 |
| LJSW750 |
0.2262 |
1.237 |
21.38 |
30.36 |
0.1972 |
| MeanJSW |
0.1358 |
1.026 |
15.39 |
23.05 |
0.2817 |
| LJSW725 |
0.1222 |
1.098 |
14.49 |
25.36 |
0.07042 |
| DiffSlope |
0.05606 |
0.6137 |
9.558 |
12.53 |
0.1549 |
| JointSlope |
0.053 |
0.8572 |
9.267 |
18.85 |
0.2676 |
| JSW200 |
0.06579 |
0.5641 |
8.819 |
11.69 |
0.05634 |
| meanMJSW |
0.05177 |
0.5558 |
8.661 |
11.27 |
0.09859 |
| JSW150 |
0.04323 |
0.9745 |
7.939 |
21.51 |
0.08451 |
| mCV |
0.03695 |
0.534 |
7.592 |
10.66 |
0.2676 |
| lCV |
0.03173 |
0.6481 |
7.294 |
13.48 |
0.04225 |
| LatSlope |
0.02309 |
0.4386 |
6.58 |
8.748 |
0.2817 |
| MCMJSW |
0.0274 |
0.7603 |
5.948 |
15.93 |
0.2817 |
| AGE |
0.02148 |
0.4313 |
5.632 |
8.513 |
0.2817 |
| TPCFDS |
0.0141 |
0.3063 |
5.042 |
5.964 |
0.2817 |
| LatIntersept |
0.007349 |
0.3108 |
4.312 |
6.12 |
0.05634 |
| XMJSW |
0.009117 |
0.1951 |
3.88 |
3.805 |
0.2394 |
- Accuracy: 0.9067
- tAUC: 0.9074
- sensitivity: 0.9087
- specificity: 0.906
bootstrap:
coefficients:
Table continues below
| CVJSW |
0.2267 |
1.215 |
1.254 |
1.295 |
0.9542 |
0.04213 |
| MaxCV |
0.3666 |
1.37 |
1.443 |
1.519 |
0.919 |
0.6679 |
| STDJSW |
0.2605 |
1.248 |
1.298 |
1.349 |
0.9107 |
0.7268 |
| MtoLDiff |
0.512 |
1.552 |
1.669 |
1.794 |
0.9132 |
0.7859 |
| DiffSlope |
-0.6023 |
0.5029 |
0.5476 |
0.5961 |
0.6384 |
0.9206 |
| MeanJSW |
-0.6765 |
0.4621 |
0.5084 |
0.5593 |
0.7859 |
0.9132 |
| LJSW725 |
-0.09308 |
0.8992 |
0.9111 |
0.9232 |
0.6994 |
0.9107 |
| LJSW750 |
-0.1446 |
0.8479 |
0.8654 |
0.8832 |
0.6792 |
0.9108 |
Table continues below
| CVJSW |
0.9542 |
0.9638 |
0.5 |
0.9638 |
0.888 |
1.858 |
| MaxCV |
0.9485 |
0.8892 |
0.6216 |
0.9535 |
0.6806 |
1.734 |
| STDJSW |
0.9361 |
0.9306 |
0.6768 |
0.9538 |
0.5911 |
1.604 |
| MtoLDiff |
0.9532 |
0.9432 |
0.7709 |
0.9753 |
0.4671 |
1.839 |
| DiffSlope |
0.9485 |
0.5836 |
0.8932 |
0.9535 |
0.1846 |
1.393 |
| MeanJSW |
0.9532 |
0.7709 |
0.9432 |
0.9753 |
0.1553 |
1.416 |
| LJSW725 |
0.9348 |
0.6584 |
0.9306 |
0.9546 |
0.1225 |
1.222 |
| LJSW750 |
0.9324 |
0.6082 |
0.9307 |
0.9529 |
0.1102 |
0.9639 |
| CVJSW |
128 |
112 |
0.2817 |
| MaxCV |
70.49 |
85.11 |
0.2676 |
| STDJSW |
57.23 |
84.58 |
0.1831 |
| MtoLDiff |
42.4 |
104 |
0.2817 |
| DiffSlope |
21.03 |
43.18 |
0.2676 |
| MeanJSW |
19.8 |
45.03 |
0.2817 |
| LJSW725 |
16.3 |
34.61 |
0.05634 |
| LJSW750 |
14.76 |
25.27 |
0.09859 |
- Accuracy: 0.9569
- tAUC: 0.9775
- sensitivity: 1
- specificity: 0.955
bootstrap:
topFeat <- min(ncol(bmodel$bagging$formulaNetwork),30);
shortformulaNetwork <- bmodel$bagging$formulaNetwork[1:topFeat,1:topFeat]
validf <- diag(shortformulaNetwork) > 0.1
gplots::heatmap.2(shortformulaNetwork[validf,validf],trace="none",mar = c(10,10),main = "B:SWiMS Formula Network",cexRow = 0.6,cexCol = 0.6)

rm <- rowMeans(cp$featureSelectionFrequency)
selFrequency <- cp$featureSelectionFrequency[rm > 0.10,]
gplots::heatmap.2(selFrequency,trace = "none",mar = c(10,10),main = "Features",cexRow = 0.2)

hm <- heatMaps(Outcome = theOutcome,data = theData[,c(theOutcome,rownames(selFrequency))],title = "Heat Map",Scale = TRUE,hCluster = "col",cexRow = 0.3,cexCol = 0.3,srtCol = 45)

vlist <- rownames(selFrequency)
vlist <- cbind(vlist,vlist)
univ <- univariateRankVariables(variableList = vlist,formula = paste(theOutcome,"~1"),Outcome = theOutcome,data = theData,type = "LM",rankingTest = "Ztest",uniType = "Regression")[,c("cohortMean","cohortStd","kendall.r","kendall.p")]
cnames <- colnames(univ);
univ <- cbind(univ,rm[rownames(univ)])
colnames(univ) <- c(cnames,"Frequency")
univ <- univ[order(-univ[,5]),]
pander::pander(univ[1:topFeat,],caption = "Features",round = 4)
Features
| MtoLDiff |
1.182 |
2.069 |
0.3927 |
0 |
1 |
| CVJSW |
1.507 |
2.884 |
0.4423 |
0 |
0.9929 |
| MCMJSW |
-0.7973 |
1.774 |
-0.3315 |
0 |
0.9929 |
| MaxCV |
0.9501 |
3.121 |
0.3069 |
0 |
0.9786 |
| STDJSW |
1.097 |
2.08 |
0.3689 |
0 |
0.9714 |
| BMI |
29.26 |
4.83 |
0.1276 |
0 |
0.8714 |
| MeanJSW |
-0.3743 |
1.454 |
-0.2526 |
0 |
0.7929 |
| AGE |
61.89 |
9.079 |
0.1511 |
0 |
0.7857 |
| LJSW700 |
-0.2314 |
1.329 |
-0.1714 |
0 |
0.7714 |
| JSW150 |
-0.708 |
1.699 |
-0.3147 |
0 |
0.6571 |
| mCV |
0.7041 |
2.448 |
0.2305 |
0 |
0.6571 |
| JointSlope |
0.5762 |
2.249 |
0.2262 |
0 |
0.6429 |
| JSW175 |
-0.7255 |
1.726 |
-0.3138 |
0 |
0.6143 |
| WEIGHT |
83.09 |
16.02 |
0.1106 |
0 |
0.6071 |
| JSW200 |
-0.8022 |
1.895 |
-0.3144 |
0 |
0.5929 |
| meanLJSW |
-0.0901 |
1.616 |
-0.0605 |
0 |
0.5929 |
| LatSlope |
0.2722 |
1.205 |
0.1632 |
0 |
0.5857 |
| meanMJSW |
-0.7163 |
1.79 |
-0.3152 |
0 |
0.5643 |
| JSW225 |
-0.7515 |
1.826 |
-0.3145 |
0 |
0.5571 |
| MedIntersept |
-0.7361 |
1.798 |
-0.3169 |
0 |
0.55 |
| LJSW750 |
-0.1362 |
1.522 |
-0.1001 |
0 |
0.5071 |
| stdLJSW |
-0.169 |
1.063 |
-0.108 |
0 |
0.5071 |
| LJSW825 |
-0.0113 |
1.615 |
-0.0108 |
0.3081 |
0.5071 |
| LatCurvature |
-0.1259 |
1.109 |
-0.0647 |
0 |
0.5071 |
| JSW300 |
-0.3912 |
1.365 |
-0.2607 |
0 |
0.4929 |
| LJSW725 |
-0.1821 |
1.448 |
-0.136 |
0 |
0.4714 |
| LJSW775 |
-0.097 |
1.546 |
-0.0783 |
0 |
0.4714 |
| LJSW800 |
-0.038 |
1.583 |
-0.0447 |
0 |
0.4571 |
| LJSW850 |
-0.0037 |
1.676 |
0.0118 |
0.2649 |
0.45 |
| LatIntersept |
-0.0324 |
1.561 |
-0.0395 |
2e-04 |
0.4357 |