library(ISLR)
set.seed(1)
train=sample(392,196)
lm.fit=lm(mpg~horsepower,data=Auto,subset = train)
attach(Auto)
The following objects are masked from Auto (pos = 3):
acceleration, cylinders, displacement,
horsepower, mpg, name, origin, weight, year
The following objects are masked from Auto (pos = 4):
acceleration, cylinders, displacement,
horsepower, mpg, name, origin, weight, year
The following objects are masked from Auto (pos = 5):
acceleration, cylinders, displacement,
horsepower, mpg, name, origin, weight, year
mean((mpg-predict(lm.fit,Auto))[-train]^2)
[1] 26.14142
lm.fit2=lm(mpg~poly(horsepower,2),data = Auto,subset=train)
mean((mpg-predict(lm.fit2,Auto))[-train]^2)
[1] 19.82259
lm.fit3=lm(mpg~poly(horsepower,3),data = Auto,subset=train)
mean((mpg-predict(lm.fit3,Auto))[-train]^2)
[1] 19.78252
set.seed(2)
train=sample(392,196)
lm.fit=lm(mpg~horsepower,subset = train)
mean((mpg-predict(lm.fit,Auto))[-train]^2)
[1] 23.29559
lm.fit2=lm(mpg~poly(horsepower,2),data = Auto,subset=train)
mean((mpg-predict(lm.fit2,Auto))[-train]^2)
[1] 18.90124
lm.fit3=lm(mpg~poly(horsepower,3),data = Auto,subset=train)
mean((mpg-predict(lm.fit3,Auto))[-train]^2)
[1] 19.2574
glm.fit= glm(mpg~horsepower, data=Auto)
coef(glm.fit)
(Intercept) horsepower
39.9358610 -0.1578447
lm.fit=lm(mpg~horsepower,data=Auto)
coef(lm.fit)
(Intercept) horsepower
39.9358610 -0.1578447
library(boot)
glm.fit = glm(mpg~horsepower, data=Auto)
cv.err=cv.glm(Auto, glm.fit)
cv.err$delta
[1] 24.23151 24.23114
cv.error = rep(0,5)
for (i in 1:5) {
glm.fit=glm(mpg~poly(horsepower,i),data=Auto)
cv.error[i]=cv.glm(Auto,glm.fit)$delta[1]
}
cv.error
[1] 24.23151 19.24821 19.33498 19.42443 19.03321
set.seed(17)
cv.error.10=rep(0,10)
for(i in 1:10){
glm.fit=glm(mpg~poly(horsepower,i),data=Auto)
cv.error.10[i]=cv.glm(Auto,glm.fit,K=10)$delta[1]
}
cv.error.10
[1] 24.20520 19.18924 19.30662 19.33799 18.87911
[6] 19.02103 18.89609 19.71201 18.95140 19.50196
===========================================================
library(class)
attach(Smarket)
The following objects are masked from Smarket (pos = 3):
Direction, Lag1, Lag2, Lag3, Lag4, Lag5,
Today, Volume, Year
The following objects are masked from Smarket (pos = 4):
Direction, Lag1, Lag2, Lag3, Lag4, Lag5,
Today, Volume, Year
train.X=cbind(Lag1,Lag2)[train,]
test.X=cbind(Lag1,Lag2)[!train,]
train.Direction=Direction[train]
set.seed(1)
train=(Year<2005)
Direction.2005=Direction[!train]
knn.pred=knn(train.X,test.X,train.Direction,k=1)
table(knn.pred,Direction.2005)
Direction.2005
knn.pred Down Up
Down 43 58
Up 68 83
(83+43)/252
[1] 0.5
knn.pred=knn(train.X,test.X,train.Direction,k=3)
table(knn.pred,Direction.2005)
Direction.2005
knn.pred Down Up
Down 48 54
Up 63 87
mean(knn.pred==Direction.2005)
[1] 0.5357143