Fiabilidad

Brayan Ivan Cruz Corona

13001595

5.3.1 The validation set approach
library(ISLR)
set.seed(1)
train=sample(392,196)
lm.fit=lm(mpg~horsepower,data=Auto,subset = train)
attach(Auto)
The following objects are masked from Auto (pos = 3):

    acceleration, cylinders, displacement,
    horsepower, mpg, name, origin, weight, year

The following objects are masked from Auto (pos = 4):

    acceleration, cylinders, displacement,
    horsepower, mpg, name, origin, weight, year

The following objects are masked from Auto (pos = 5):

    acceleration, cylinders, displacement,
    horsepower, mpg, name, origin, weight, year
mean((mpg-predict(lm.fit,Auto))[-train]^2)
[1] 26.14142
lm.fit2=lm(mpg~poly(horsepower,2),data = Auto,subset=train)
mean((mpg-predict(lm.fit2,Auto))[-train]^2)
[1] 19.82259
lm.fit3=lm(mpg~poly(horsepower,3),data = Auto,subset=train)
mean((mpg-predict(lm.fit3,Auto))[-train]^2)
[1] 19.78252
set.seed(2)
train=sample(392,196)
lm.fit=lm(mpg~horsepower,subset = train)
mean((mpg-predict(lm.fit,Auto))[-train]^2)
[1] 23.29559
lm.fit2=lm(mpg~poly(horsepower,2),data = Auto,subset=train)
mean((mpg-predict(lm.fit2,Auto))[-train]^2)
[1] 18.90124
lm.fit3=lm(mpg~poly(horsepower,3),data = Auto,subset=train)
mean((mpg-predict(lm.fit3,Auto))[-train]^2)
[1] 19.2574
5.3.2 Leave-One-Out Cross Validation
glm.fit= glm(mpg~horsepower, data=Auto)
coef(glm.fit)
(Intercept)  horsepower 
 39.9358610  -0.1578447 
lm.fit=lm(mpg~horsepower,data=Auto)
coef(lm.fit)
(Intercept)  horsepower 
 39.9358610  -0.1578447 
library(boot)
glm.fit = glm(mpg~horsepower, data=Auto)
cv.err=cv.glm(Auto, glm.fit)
cv.err$delta
[1] 24.23151 24.23114
cv.error = rep(0,5)
for (i in 1:5) {
  glm.fit=glm(mpg~poly(horsepower,i),data=Auto)
  cv.error[i]=cv.glm(Auto,glm.fit)$delta[1]
}
cv.error
[1] 24.23151 19.24821 19.33498 19.42443 19.03321
5.3.3 k-Fold Cross Validation
set.seed(17)
cv.error.10=rep(0,10)
for(i in 1:10){
  glm.fit=glm(mpg~poly(horsepower,i),data=Auto)
  cv.error.10[i]=cv.glm(Auto,glm.fit,K=10)$delta[1]
}
cv.error.10
 [1] 24.20520 19.18924 19.30662 19.33799 18.87911
 [6] 19.02103 18.89609 19.71201 18.95140 19.50196

===========================================================

4.6.5 K-Nearest Neighbors
library(class)
attach(Smarket)
The following objects are masked from Smarket (pos = 3):

    Direction, Lag1, Lag2, Lag3, Lag4, Lag5,
    Today, Volume, Year

The following objects are masked from Smarket (pos = 4):

    Direction, Lag1, Lag2, Lag3, Lag4, Lag5,
    Today, Volume, Year
train.X=cbind(Lag1,Lag2)[train,]
test.X=cbind(Lag1,Lag2)[!train,]
train.Direction=Direction[train]
set.seed(1)
train=(Year<2005)
Direction.2005=Direction[!train]
knn.pred=knn(train.X,test.X,train.Direction,k=1)
table(knn.pred,Direction.2005)
        Direction.2005
knn.pred Down Up
    Down   43 58
    Up     68 83
(83+43)/252
[1] 0.5
knn.pred=knn(train.X,test.X,train.Direction,k=3)
table(knn.pred,Direction.2005)
        Direction.2005
knn.pred Down Up
    Down   48 54
    Up     63 87
mean(knn.pred==Direction.2005)
[1] 0.5357143
LS0tCnRpdGxlOiAiTGFib3JhdG9yaW8gMiIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQoKIyMjI0ZpYWJpbGlkYWQKIyMjI0JyYXlhbiBJdmFuIENydXogQ29yb25hCiMjIyMxMzAwMTU5NQoKCiMjIyMjNS4zLjEgVGhlIHZhbGlkYXRpb24gc2V0IGFwcHJvYWNoCgpgYGB7cn0KbGlicmFyeShJU0xSKQpzZXQuc2VlZCgxKQp0cmFpbj1zYW1wbGUoMzkyLDE5NikKYGBgCgpgYGB7cn0KbG0uZml0PWxtKG1wZ35ob3JzZXBvd2VyLGRhdGE9QXV0byxzdWJzZXQgPSB0cmFpbikKYGBgCgpgYGB7cn0KYXR0YWNoKEF1dG8pCm1lYW4oKG1wZy1wcmVkaWN0KGxtLmZpdCxBdXRvKSlbLXRyYWluXV4yKQpgYGAKCmBgYHtyfQpsbS5maXQyPWxtKG1wZ35wb2x5KGhvcnNlcG93ZXIsMiksZGF0YSA9IEF1dG8sc3Vic2V0PXRyYWluKQptZWFuKChtcGctcHJlZGljdChsbS5maXQyLEF1dG8pKVstdHJhaW5dXjIpCgpsbS5maXQzPWxtKG1wZ35wb2x5KGhvcnNlcG93ZXIsMyksZGF0YSA9IEF1dG8sc3Vic2V0PXRyYWluKQptZWFuKChtcGctcHJlZGljdChsbS5maXQzLEF1dG8pKVstdHJhaW5dXjIpCmBgYAoKCmBgYHtyfQpzZXQuc2VlZCgyKQp0cmFpbj1zYW1wbGUoMzkyLDE5NikKCmxtLmZpdD1sbShtcGd+aG9yc2Vwb3dlcixzdWJzZXQgPSB0cmFpbikKbWVhbigobXBnLXByZWRpY3QobG0uZml0LEF1dG8pKVstdHJhaW5dXjIpCgpsbS5maXQyPWxtKG1wZ35wb2x5KGhvcnNlcG93ZXIsMiksZGF0YSA9IEF1dG8sc3Vic2V0PXRyYWluKQptZWFuKChtcGctcHJlZGljdChsbS5maXQyLEF1dG8pKVstdHJhaW5dXjIpCgpsbS5maXQzPWxtKG1wZ35wb2x5KGhvcnNlcG93ZXIsMyksZGF0YSA9IEF1dG8sc3Vic2V0PXRyYWluKQptZWFuKChtcGctcHJlZGljdChsbS5maXQzLEF1dG8pKVstdHJhaW5dXjIpCmBgYAoKCiMjIyMjNS4zLjIgTGVhdmUtT25lLU91dCBDcm9zcyBWYWxpZGF0aW9uCgpgYGB7cn0KZ2xtLmZpdD0gZ2xtKG1wZ35ob3JzZXBvd2VyLCBkYXRhPUF1dG8pCmNvZWYoZ2xtLmZpdCkKYGBgCgpgYGB7cn0KbG0uZml0PWxtKG1wZ35ob3JzZXBvd2VyLGRhdGE9QXV0bykKY29lZihsbS5maXQpCmBgYAoKCmBgYHtyfQpsaWJyYXJ5KGJvb3QpCmdsbS5maXQgPSBnbG0obXBnfmhvcnNlcG93ZXIsIGRhdGE9QXV0bykKY3YuZXJyPWN2LmdsbShBdXRvLCBnbG0uZml0KQpjdi5lcnIkZGVsdGEKYGBgCgpgYGB7cn0KY3YuZXJyb3IgPSByZXAoMCw1KQpmb3IgKGkgaW4gMTo1KSB7CiAgZ2xtLmZpdD1nbG0obXBnfnBvbHkoaG9yc2Vwb3dlcixpKSxkYXRhPUF1dG8pCiAgY3YuZXJyb3JbaV09Y3YuZ2xtKEF1dG8sZ2xtLmZpdCkkZGVsdGFbMV0KfQoKY3YuZXJyb3IKYGBgCgoKIyMjIyM1LjMuMyBrLUZvbGQgQ3Jvc3MgVmFsaWRhdGlvbgoKYGBge3J9CnNldC5zZWVkKDE3KQpjdi5lcnJvci4xMD1yZXAoMCwxMCkKZm9yKGkgaW4gMToxMCl7CiAgZ2xtLmZpdD1nbG0obXBnfnBvbHkoaG9yc2Vwb3dlcixpKSxkYXRhPUF1dG8pCiAgY3YuZXJyb3IuMTBbaV09Y3YuZ2xtKEF1dG8sZ2xtLmZpdCxLPTEwKSRkZWx0YVsxXQp9CmN2LmVycm9yLjEwCmBgYAoKPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT0KCiMjIyMjNC42LjUgSy1OZWFyZXN0IE5laWdoYm9ycwoKYGBge3J9CmxpYnJhcnkoY2xhc3MpCmF0dGFjaChTbWFya2V0KQp0cmFpbi5YPWNiaW5kKExhZzEsTGFnMilbdHJhaW4sXQp0ZXN0Llg9Y2JpbmQoTGFnMSxMYWcyKVshdHJhaW4sXQp0cmFpbi5EaXJlY3Rpb249RGlyZWN0aW9uW3RyYWluXQpgYGAKCmBgYHtyfQpzZXQuc2VlZCgxKQp0cmFpbj0oWWVhcjwyMDA1KQpEaXJlY3Rpb24uMjAwNT1EaXJlY3Rpb25bIXRyYWluXQprbm4ucHJlZD1rbm4odHJhaW4uWCx0ZXN0LlgsdHJhaW4uRGlyZWN0aW9uLGs9MSkKdGFibGUoa25uLnByZWQsRGlyZWN0aW9uLjIwMDUpCmBgYAoKYGBge3J9Cig4Mys0MykvMjUyCmBgYAoKCmBgYHtyfQprbm4ucHJlZD1rbm4odHJhaW4uWCx0ZXN0LlgsdHJhaW4uRGlyZWN0aW9uLGs9MykKdGFibGUoa25uLnByZWQsRGlyZWN0aW9uLjIwMDUpCmBgYAoKCmBgYHtyfQptZWFuKGtubi5wcmVkPT1EaXJlY3Rpb24uMjAwNSkKYGBgCgo=