\(f(x, y) = x^2 + 3y^2 − 6y + 4xy\)
\(f_x(x, y) = 2x + 4y\)
\(f_y(x, y) = 6y − 6 + 4x\)
\(2x + 4y=0\)
\(6y − 6 + 4x=0\)
\(y=-\frac{1}{2}x\) \(6(-\frac{1}{2}x) − 6 + 4x=0\)
\(-3x-6+4x=0\)
\(x=6\)
\(y=-\frac{1}{2}*6=-3\)
There is one critical point: (6;-3)
\(f_{xx}(x, y) = 2\)
\(f_{yy}(x, y) = 6\)
\(f_{xy}(x, y) = 4\)
\(f_{xy}(x, y) = 4\)
\(D = f_{xx}(x_0, y_0)+f_{yy}(x_0, y_0) − f_{xy}^2(x_0, y_0)\)
\(D = 2+6 − 4^2=8-16=-8\)
If \(D<0\) the critical point of (6;-3) is a saddle point