Your final is due by the end of day on 5/20/2018 You should post your solutions to your GitHub account or RPubs. You are also expected to make a short presentation via YouTube and post that recording to the board. This project will show off your ability to understand the elements of the class.
You are to register for Kaggle.com (free) and compete in the House Prices: Advanced Regression Techniques competition. https://www.kaggle.com/c/house-prices-advanced-regression-techniques . I want you to do the following. * Pick one of the quantitative independent variables from the training data set (train.csv) , and define that variable as X. Make sure this variable is skewed to the right! * Pick the dependent variable and define it as Y.
The data is loaded and the summary is being obtained for all variables (categorial or continuous). In this case, I will only consider continouous variables for this anlaysis.
train = read.csv("train.csv")
head(summary(train))
## Id MSSubClass MSZoning LotFrontage
## Min. : 1.0 Min. : 20.0 C (all): 10 Min. : 21.00
## 1st Qu.: 365.8 1st Qu.: 20.0 FV : 65 1st Qu.: 59.00
## Median : 730.5 Median : 50.0 RH : 16 Median : 69.00
## Mean : 730.5 Mean : 56.9 RL :1151 Mean : 70.05
## 3rd Qu.:1095.2 3rd Qu.: 70.0 RM : 218 3rd Qu.: 80.00
## Max. :1460.0 Max. :190.0 Max. :313.00
## LotArea Street Alley LotShape LandContour
## Min. : 1300 Grvl: 6 Grvl: 50 IR1:484 Bnk: 63
## 1st Qu.: 7554 Pave:1454 Pave: 41 IR2: 41 HLS: 50
## Median : 9478 NA's:1369 IR3: 10 Low: 36
## Mean : 10517 Reg:925 Lvl:1311
## 3rd Qu.: 11602
## Max. :215245
## Utilities LotConfig LandSlope Neighborhood Condition1
## AllPub:1459 Corner : 263 Gtl:1382 NAmes :225 Norm :1260
## NoSeWa: 1 CulDSac: 94 Mod: 65 CollgCr:150 Feedr : 81
## FR2 : 47 Sev: 13 OldTown:113 Artery : 48
## FR3 : 4 Edwards:100 RRAn : 26
## Inside :1052 Somerst: 86 PosN : 19
## Gilbert: 79 RRAe : 11
## Condition2 BldgType HouseStyle OverallQual
## Norm :1445 1Fam :1220 1Story :726 Min. : 1.000
## Feedr : 6 2fmCon: 31 2Story :445 1st Qu.: 5.000
## Artery : 2 Duplex: 52 1.5Fin :154 Median : 6.000
## PosN : 2 Twnhs : 43 SLvl : 65 Mean : 6.099
## RRNn : 2 TwnhsE: 114 SFoyer : 37 3rd Qu.: 7.000
## PosA : 1 1.5Unf : 14 Max. :10.000
## OverallCond YearBuilt YearRemodAdd RoofStyle
## Min. :1.000 Min. :1872 Min. :1950 Flat : 13
## 1st Qu.:5.000 1st Qu.:1954 1st Qu.:1967 Gable :1141
## Median :5.000 Median :1973 Median :1994 Gambrel: 11
## Mean :5.575 Mean :1971 Mean :1985 Hip : 286
## 3rd Qu.:6.000 3rd Qu.:2000 3rd Qu.:2004 Mansard: 7
## Max. :9.000 Max. :2010 Max. :2010 Shed : 2
## RoofMatl Exterior1st Exterior2nd MasVnrType MasVnrArea
## CompShg:1434 VinylSd:515 VinylSd:504 BrkCmn : 15 Min. : 0.0
## Tar&Grv: 11 HdBoard:222 MetalSd:214 BrkFace:445 1st Qu.: 0.0
## WdShngl: 6 MetalSd:220 HdBoard:207 None :864 Median : 0.0
## WdShake: 5 Wd Sdng:206 Wd Sdng:197 Stone :128 Mean : 103.7
## ClyTile: 1 Plywood:108 Plywood:142 NA's : 8 3rd Qu.: 166.0
## Membran: 1 CemntBd: 61 CmentBd: 60 Max. :1600.0
## ExterQual ExterCond Foundation BsmtQual BsmtCond BsmtExposure
## Ex: 52 Ex: 3 BrkTil:146 Ex :121 Fa : 45 Av :221
## Fa: 14 Fa: 28 CBlock:634 Fa : 35 Gd : 65 Gd :134
## Gd:488 Gd: 146 PConc :647 Gd :618 Po : 2 Mn :114
## TA:906 Po: 1 Slab : 24 TA :649 TA :1311 No :953
## TA:1282 Stone : 6 NA's: 37 NA's: 37 NA's: 38
## Wood : 3
## BsmtFinType1 BsmtFinSF1 BsmtFinType2 BsmtFinSF2
## ALQ :220 Min. : 0.0 ALQ : 19 Min. : 0.00
## BLQ :148 1st Qu.: 0.0 BLQ : 33 1st Qu.: 0.00
## GLQ :418 Median : 383.5 GLQ : 14 Median : 0.00
## LwQ : 74 Mean : 443.6 LwQ : 46 Mean : 46.55
## Rec :133 3rd Qu.: 712.2 Rec : 54 3rd Qu.: 0.00
## Unf :430 Max. :5644.0 Unf :1256 Max. :1474.00
## BsmtUnfSF TotalBsmtSF Heating HeatingQC CentralAir
## Min. : 0.0 Min. : 0.0 Floor: 1 Ex:741 N: 95
## 1st Qu.: 223.0 1st Qu.: 795.8 GasA :1428 Fa: 49 Y:1365
## Median : 477.5 Median : 991.5 GasW : 18 Gd:241
## Mean : 567.2 Mean :1057.4 Grav : 7 Po: 1
## 3rd Qu.: 808.0 3rd Qu.:1298.2 OthW : 2 TA:428
## Max. :2336.0 Max. :6110.0 Wall : 4
## Electrical X1stFlrSF X2ndFlrSF LowQualFinSF
## FuseA: 94 Min. : 334 Min. : 0 Min. : 0.000
## FuseF: 27 1st Qu.: 882 1st Qu.: 0 1st Qu.: 0.000
## FuseP: 3 Median :1087 Median : 0 Median : 0.000
## Mix : 1 Mean :1163 Mean : 347 Mean : 5.845
## SBrkr:1334 3rd Qu.:1391 3rd Qu.: 728 3rd Qu.: 0.000
## NA's : 1 Max. :4692 Max. :2065 Max. :572.000
## GrLivArea BsmtFullBath BsmtHalfBath FullBath
## Min. : 334 Min. :0.0000 Min. :0.00000 Min. :0.000
## 1st Qu.:1130 1st Qu.:0.0000 1st Qu.:0.00000 1st Qu.:1.000
## Median :1464 Median :0.0000 Median :0.00000 Median :2.000
## Mean :1515 Mean :0.4253 Mean :0.05753 Mean :1.565
## 3rd Qu.:1777 3rd Qu.:1.0000 3rd Qu.:0.00000 3rd Qu.:2.000
## Max. :5642 Max. :3.0000 Max. :2.00000 Max. :3.000
## HalfBath BedroomAbvGr KitchenAbvGr KitchenQual
## Min. :0.0000 Min. :0.000 Min. :0.000 Ex:100
## 1st Qu.:0.0000 1st Qu.:2.000 1st Qu.:1.000 Fa: 39
## Median :0.0000 Median :3.000 Median :1.000 Gd:586
## Mean :0.3829 Mean :2.866 Mean :1.047 TA:735
## 3rd Qu.:1.0000 3rd Qu.:3.000 3rd Qu.:1.000
## Max. :2.0000 Max. :8.000 Max. :3.000
## TotRmsAbvGrd Functional Fireplaces FireplaceQu GarageType
## Min. : 2.000 Maj1: 14 Min. :0.000 Ex : 24 2Types : 6
## 1st Qu.: 5.000 Maj2: 5 1st Qu.:0.000 Fa : 33 Attchd :870
## Median : 6.000 Min1: 31 Median :1.000 Gd :380 Basment: 19
## Mean : 6.518 Min2: 34 Mean :0.613 Po : 20 BuiltIn: 88
## 3rd Qu.: 7.000 Mod : 15 3rd Qu.:1.000 TA :313 CarPort: 9
## Max. :14.000 Sev : 1 Max. :3.000 NA's:690 Detchd :387
## GarageYrBlt GarageFinish GarageCars GarageArea GarageQual
## Min. :1900 Fin :352 Min. :0.000 Min. : 0.0 Ex : 3
## 1st Qu.:1961 RFn :422 1st Qu.:1.000 1st Qu.: 334.5 Fa : 48
## Median :1980 Unf :605 Median :2.000 Median : 480.0 Gd : 14
## Mean :1979 NA's: 81 Mean :1.767 Mean : 473.0 Po : 3
## 3rd Qu.:2002 3rd Qu.:2.000 3rd Qu.: 576.0 TA :1311
## Max. :2010 Max. :4.000 Max. :1418.0 NA's: 81
## GarageCond PavedDrive WoodDeckSF OpenPorchSF EnclosedPorch
## Ex : 2 N: 90 Min. : 0.00 Min. : 0.00 Min. : 0.00
## Fa : 35 P: 30 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.00
## Gd : 9 Y:1340 Median : 0.00 Median : 25.00 Median : 0.00
## Po : 7 Mean : 94.24 Mean : 46.66 Mean : 21.95
## TA :1326 3rd Qu.:168.00 3rd Qu.: 68.00 3rd Qu.: 0.00
## NA's: 81 Max. :857.00 Max. :547.00 Max. :552.00
## X3SsnPorch ScreenPorch PoolArea PoolQC
## Min. : 0.00 Min. : 0.00 Min. : 0.000 Ex : 2
## 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.000 Fa : 2
## Median : 0.00 Median : 0.00 Median : 0.000 Gd : 3
## Mean : 3.41 Mean : 15.06 Mean : 2.759 NA's:1453
## 3rd Qu.: 0.00 3rd Qu.: 0.00 3rd Qu.: 0.000
## Max. :508.00 Max. :480.00 Max. :738.000
## Fence MiscFeature MiscVal MoSold
## GdPrv: 59 Gar2: 2 Min. : 0.00 Min. : 1.000
## GdWo : 54 Othr: 2 1st Qu.: 0.00 1st Qu.: 5.000
## MnPrv: 157 Shed: 49 Median : 0.00 Median : 6.000
## MnWw : 11 TenC: 1 Mean : 43.49 Mean : 6.322
## NA's :1179 NA's:1406 3rd Qu.: 0.00 3rd Qu.: 8.000
## Max. :15500.00 Max. :12.000
## YrSold SaleType SaleCondition SalePrice
## Min. :2006 WD :1267 Abnorml: 101 Min. : 34900
## 1st Qu.:2007 New : 122 AdjLand: 4 1st Qu.:129975
## Median :2008 COD : 43 Alloca : 12 Median :163000
## Mean :2008 ConLD : 9 Family : 20 Mean :180921
## 3rd Qu.:2009 ConLI : 5 Normal :1198 3rd Qu.:214000
## Max. :2010 ConLw : 5 Partial: 125 Max. :755000
#fill NAs with 0.
train[is.na(train)] <- 0
## Warning in `[<-.factor`(`*tmp*`, thisvar, value = 0): invalid factor level,
## NA generated
## Warning in `[<-.factor`(`*tmp*`, thisvar, value = 0): invalid factor level,
## NA generated
## Warning in `[<-.factor`(`*tmp*`, thisvar, value = 0): invalid factor level,
## NA generated
## Warning in `[<-.factor`(`*tmp*`, thisvar, value = 0): invalid factor level,
## NA generated
## Warning in `[<-.factor`(`*tmp*`, thisvar, value = 0): invalid factor level,
## NA generated
## Warning in `[<-.factor`(`*tmp*`, thisvar, value = 0): invalid factor level,
## NA generated
## Warning in `[<-.factor`(`*tmp*`, thisvar, value = 0): invalid factor level,
## NA generated
## Warning in `[<-.factor`(`*tmp*`, thisvar, value = 0): invalid factor level,
## NA generated
## Warning in `[<-.factor`(`*tmp*`, thisvar, value = 0): invalid factor level,
## NA generated
## Warning in `[<-.factor`(`*tmp*`, thisvar, value = 0): invalid factor level,
## NA generated
## Warning in `[<-.factor`(`*tmp*`, thisvar, value = 0): invalid factor level,
## NA generated
## Warning in `[<-.factor`(`*tmp*`, thisvar, value = 0): invalid factor level,
## NA generated
## Warning in `[<-.factor`(`*tmp*`, thisvar, value = 0): invalid factor level,
## NA generated
## Warning in `[<-.factor`(`*tmp*`, thisvar, value = 0): invalid factor level,
## NA generated
## Warning in `[<-.factor`(`*tmp*`, thisvar, value = 0): invalid factor level,
## NA generated
## Warning in `[<-.factor`(`*tmp*`, thisvar, value = 0): invalid factor level,
## NA generated
summary(train$BsmtFinSF1)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.0 0.0 383.5 443.6 712.2 5644.0
summary(train$BsmtFinSF2)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.00 0.00 0.00 46.55 0.00 1474.00
train$BsmtFinSF12 = train$BsmtFinSF1+train$BsmtFinSF2
#import test data for submission
test = read.csv("test.csv")
#fill NAs with 0.
test[is.na(test)] <- 0
## Warning in `[<-.factor`(`*tmp*`, thisvar, value = 0): invalid factor level,
## NA generated
## Warning in `[<-.factor`(`*tmp*`, thisvar, value = 0): invalid factor level,
## NA generated
## Warning in `[<-.factor`(`*tmp*`, thisvar, value = 0): invalid factor level,
## NA generated
## Warning in `[<-.factor`(`*tmp*`, thisvar, value = 0): invalid factor level,
## NA generated
## Warning in `[<-.factor`(`*tmp*`, thisvar, value = 0): invalid factor level,
## NA generated
## Warning in `[<-.factor`(`*tmp*`, thisvar, value = 0): invalid factor level,
## NA generated
## Warning in `[<-.factor`(`*tmp*`, thisvar, value = 0): invalid factor level,
## NA generated
## Warning in `[<-.factor`(`*tmp*`, thisvar, value = 0): invalid factor level,
## NA generated
## Warning in `[<-.factor`(`*tmp*`, thisvar, value = 0): invalid factor level,
## NA generated
## Warning in `[<-.factor`(`*tmp*`, thisvar, value = 0): invalid factor level,
## NA generated
## Warning in `[<-.factor`(`*tmp*`, thisvar, value = 0): invalid factor level,
## NA generated
## Warning in `[<-.factor`(`*tmp*`, thisvar, value = 0): invalid factor level,
## NA generated
## Warning in `[<-.factor`(`*tmp*`, thisvar, value = 0): invalid factor level,
## NA generated
## Warning in `[<-.factor`(`*tmp*`, thisvar, value = 0): invalid factor level,
## NA generated
## Warning in `[<-.factor`(`*tmp*`, thisvar, value = 0): invalid factor level,
## NA generated
## Warning in `[<-.factor`(`*tmp*`, thisvar, value = 0): invalid factor level,
## NA generated
## Warning in `[<-.factor`(`*tmp*`, thisvar, value = 0): invalid factor level,
## NA generated
## Warning in `[<-.factor`(`*tmp*`, thisvar, value = 0): invalid factor level,
## NA generated
## Warning in `[<-.factor`(`*tmp*`, thisvar, value = 0): invalid factor level,
## NA generated
## Warning in `[<-.factor`(`*tmp*`, thisvar, value = 0): invalid factor level,
## NA generated
## Warning in `[<-.factor`(`*tmp*`, thisvar, value = 0): invalid factor level,
## NA generated
## Warning in `[<-.factor`(`*tmp*`, thisvar, value = 0): invalid factor level,
## NA generated
The data being used is the sum of the Finished Basement area. This means that all types (even if the area is for mechanical/utilities) it could potentially in the future be reclaimed as usable space. The area that is unfinished is being ignored as it is not livable at the point of sale. It may add potential value in the future but I am making the assumption that it will not for the purposes of this analysis. In addition, I have generated new variables based upon looking at the data that I felt might be helpful when generating the models later on in the anlaysis. These include AllSF which is the sum of all SF footage described in the house, and then taking this new variable and creating SFLotRatio.
#function to get mode of a variable.
getmode <- function(v) {
uniqv <- unique(v)
uniqv[which.max(tabulate(match(v, uniqv)))]
}
#test for skewneess
summary(train$BsmtFinSF12)[4]>summary(train$BsmtFinSF12)[3]
## Mean
## TRUE
summary(train$BsmtFinSF12)[3]>getmode(train$BsmtFinSF12)
## Median
## TRUE
skewness(train$BsmtFinSF12)
## [1] 1.403074
#visual of skewness
par(mfrow=c(1,2))
hist(train$BsmtFinSF12, main ='Histogram of Usable \n Basement Area')
qqnorm(train$BsmtFinSF12, main ='QQ Plot of Usable \n Basement Area')
qqline(train$BsmtFinSF12)
In addition, the data was selected because of its skewness which in this case is mean > median > mode which is 490.2 > 465 > 0. The data has a lower bound of 0, as an area can only be greater than or equal to 0 in livable space. The histogram and the qqplot also visually confirm this information.
The dependent variable for this analysis will be the Sale Price of the home, the function will have the form of \(f(x) = SalePrice = m*BsmtFinSF12+b\) where BsmtFinSF12 is the sum of column BsmtFinSF1 and BsmtFinSF2 as noted above.
Calculate as a minimum the below probabilities a through c. Assume the small letter “x” is estimated as the 1st quartile of the X variable, and the small letter “y” is estimated as the 1st quartile of the Y variable. Interpret the meaning of all probabilities. In addition, make a table of counts as shown below.
To populate the table of probabilities for the 1st quartile for x and 2nd quartile for y, I will be using the quantile function in r.
xq1 <- quantile(train$BsmtFinSF12, 0.25)
yq2 <- quantile(train$SalePrice, 0.5)
rowcount <- dim(train)[1]
upperxq1yq2 <- filter(train, train$SalePrice > yq2 & train$BsmtFinSF12 > xq1) %>% count()
upperyq2 <- filter(train, train$SalePrice > yq2) %>% count()
(upperxq1yq2/rowcount) / (upperyq2/rowcount)
## n
## 1 0.706044
#insert into matrix table
d22<- filter(train, train$SalePrice > yq2 & train$BsmtFinSF12 > xq1) %>% count()
The value for P(X>x|Y>y) is 0.7060.
upperxq1yq2 <- filter(train, train$SalePrice > yq2 & train$BsmtFinSF12 > xq1) %>% count()
upperyq2 <- filter(train, train$SalePrice > yq2) %>% count()
(upperxq1yq2/rowcount) * (upperyq2/rowcount)
## n
## 1 0.1755451
The value for P(X>x,Y>y) is 0.1755.
upperyq2xq1 <- filter(train, train$SalePrice > yq2 & train$BsmtFinSF12 < xq1) %>% count()
upperyq2 <- filter(train, train$SalePrice > yq2) %>% count()
(upperyq2xq1/rowcount)/(upperyq2/rowcount)
## n
## 1 0
#Insert into matrix table
d21<- filter(train, train$SalePrice > yq2 & train$BsmtFinSF12 < xq1) %>% count()
The value P(X
Does splitting the training data in this fashion make them independent?
#Insert into matrix table. Fill in other items including row and column sums.
d23 <- filter(train, train$SalePrice > yq2) %>% count()
d13 <- dim(train)[1]-d23
d32 <- filter(train, train$BsmtFinSF12 > xq1) %>% count()
d31 <- dim(train)[1]-d32
d11 <- d31-d21
d12 <- d32-d22
d33 <- dim(train)[1]
#prepare table
tab <- matrix(c(d11,d21,d31,d12,d22,d32,d13,d23,d33), 3, 3, byrow = T)
print(tab)
## [,1] [,2] [,3]
## [1,] 467 0 467
## [2,] 479 514 993
## [3,] 732 728 1460
PA <- d32/d33
PB <- d23/d33
PA*PB
## n
## 1 0.3391368
Let A be the new variable counting those observations above the 1st quartile for X, and let B be the new variable counting those observations above the 1st quartile for Y.
The item P(A) * P(B) is 0.34. This means that they are not equal as P(AB) = 0.71 which is not equal to 0.34.
chimat<-rbind(c(467,0),c(479,514))
chisq.test(chimat,correct=TRUE)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: chimat
## X-squared = 370.81, df = 1, p-value < 2.2e-16
#check variables also
chisq.test(train$TotalBsmtSF, train$SalePrice, correct=FALSE)
## Warning in chisq.test(train$TotalBsmtSF, train$SalePrice, correct = FALSE):
## Chi-squared approximation may be incorrect
##
## Pearson's Chi-squared test
##
## data: train$TotalBsmtSF and train$SalePrice
## X-squared = 509710, df = 476640, p-value < 2.2e-16
Since the p-value < .05 significance level, we reject the null hypothesis that the BsmtFinSF is independent of SalePrice. The test shows dependence between BsmtFinSF and SalePrice. This was verified both using the breakout values and then doing the full test on the full data for X and Y.
library("dplyr")
library(purrr)
library(tidyr)
library(ggplot2)
library(corrplot)
## corrplot 0.84 loaded
ntrain<-select_if(train, is.numeric)
ntrain %>%
keep(is.numeric) %>% # Keep only numeric columns
gather() %>% # Convert to key-value pairs
ggplot(aes(value)) + # Plot the values
facet_wrap(~ key, scales = "free") + # In separate panels
geom_bar() # as density
ntrain %>%
keep(is.numeric) %>% # Keep only numeric columns
gather() %>% # Convert to key-value pairs
ggplot(aes(value)) + # Plot the values
facet_wrap(~ key, scales = "free") + # In separate panels
geom_density() # as density
subset <- select(train, TotalBsmtSF, TotRmsAbvGrd, LotArea, SalePrice)
subcor <- cor(subset)
par(mfrow=c(1,2))
ggplot(train, aes(x=BsmtFinSF12,y=SalePrice)) + geom_point() + ggtitle("Finished Basement SF vs Sale Price") + xlab("Finished Basement (BsmtFinSF1 + BsmtFinSF2)")
corrplot(subcor, method="square")
The best correlation is TotalBsmtSF and SalePrice according to the information from the correlation plot.
cor.test(train$TotalBsmtSF, train$SalePrice, method = "pearson" , conf.level = 0.92)
##
## Pearson's product-moment correlation
##
## data: train$TotalBsmtSF and train$SalePrice
## t = 29.671, df = 1458, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 92 percent confidence interval:
## 0.5841762 0.6413763
## sample estimates:
## cor
## 0.6135806
cor.test(train$TotRmsAbvGrd, train$SalePrice, method = "pearson" , conf.level = 0.92)
##
## Pearson's product-moment correlation
##
## data: train$TotRmsAbvGrd and train$SalePrice
## t = 24.099, df = 1458, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 92 percent confidence interval:
## 0.5001246 0.5657172
## sample estimates:
## cor
## 0.5337232
cor.test(train$LotArea, train$SalePrice, method = "pearson" , conf.level = 0.92)
##
## Pearson's product-moment correlation
##
## data: train$LotArea and train$SalePrice
## t = 10.445, df = 1458, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 92 percent confidence interval:
## 0.2206794 0.3059759
## sample estimates:
## cor
## 0.2638434
This indicates that there is correlation as the p-value is < 0.5 for all three selected variables. In all cases, the correlation values also fall within the 92 CI.
Furthermore, although there seems to be no correlation with each of the three variables, we will do the calculation for Familywise Errors FWE which is FWE ≤ 1 – (1 – αIT)c. Alpha in this icase if 92% and c is 3 for running the test for 3 variables. In this case we get a value that is very high 0.999488. In order to compensate for this we will rerun the correlation pearson tests but this time instead of CI of 92% we will adjust for the value of the 3 tests which is 8%/3 ~ 2.67%. Our new CI will be 1-(8%/3) which is 97.33%
cor.test(train$TotalBsmtSF, train$SalePrice, method = "pearson" , conf.level = 0.9733)
##
## Pearson's product-moment correlation
##
## data: train$TotalBsmtSF and train$SalePrice
## t = 29.671, df = 1458, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 97.33 percent confidence interval:
## 0.5760909 0.6484941
## sample estimates:
## cor
## 0.6135806
cor.test(train$TotRmsAbvGrd, train$SalePrice, method = "pearson" , conf.level = 0.9733)
##
## Pearson's product-moment correlation
##
## data: train$TotRmsAbvGrd and train$SalePrice
## t = 24.099, df = 1458, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 97.33 percent confidence interval:
## 0.4909302 0.5739468
## sample estimates:
## cor
## 0.5337232
cor.test(train$LotArea, train$SalePrice, method = "pearson" , conf.level = 0.9733)
##
## Pearson's product-moment correlation
##
## data: train$LotArea and train$SalePrice
## t = 10.445, df = 1458, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 97.33 percent confidence interval:
## 0.2090551 0.3169804
## sample estimates:
## cor
## 0.2638434
In this case, we will get the same p-value that p<0.05 for all 3 items so we can reject the null hypthoses and continue to assume that all 3 variables do not have a correlation.
Invert your 3 x 3 correlation matrix from above. (This is known as the precision matrix and contains variance inflation factors on the diagonal.) Multiply the correlation matrix by the precision matrix, and then multiply the precision matrix by the correlation matrix. Conduct LU decomposition on the matrix.
The following items generate the inverted matrix from the correlation matrix.
print(subcor)
## TotalBsmtSF TotRmsAbvGrd LotArea SalePrice
## TotalBsmtSF 1.0000000 0.2855726 0.2608331 0.6135806
## TotRmsAbvGrd 0.2855726 1.0000000 0.1900148 0.5337232
## LotArea 0.2608331 0.1900148 1.0000000 0.2638434
## SalePrice 0.6135806 0.5337232 0.2638434 1.0000000
inv<-solve(subcor)
print(inv)
## TotalBsmtSF TotRmsAbvGrd LotArea SalePrice
## TotalBsmtSF 1.6396732 0.10848043 -0.18011064 -1.0164491
## TotRmsAbvGrd 0.1084804 1.41061034 -0.08612454 -0.7967135
## LotArea -0.1801106 -0.08612454 1.09853013 -0.1333608
## SalePrice -1.0164491 -0.79671350 -0.13336082 2.0840842
round(subcor %*% inv)
## TotalBsmtSF TotRmsAbvGrd LotArea SalePrice
## TotalBsmtSF 1 0 0 0
## TotRmsAbvGrd 0 1 0 0
## LotArea 0 0 1 0
## SalePrice 0 0 0 1
round(inv %*% subcor)
## TotalBsmtSF TotRmsAbvGrd LotArea SalePrice
## TotalBsmtSF 1 0 0 0
## TotRmsAbvGrd 0 1 0 0
## LotArea 0 0 1 0
## SalePrice 0 0 0 1
library(Matrix)
## Warning: package 'Matrix' was built under R version 3.4.4
##
## Attaching package: 'Matrix'
## The following object is masked from 'package:tidyr':
##
## expand
lum <- lu(inv)
elu <- expand(lum)
round(elu$L,3)
## 4 x 4 Matrix of class "dtrMatrix" (unitriangular)
## [,1] [,2] [,3] [,4]
## [1,] 1.000 . . .
## [2,] 0.066 1.000 . .
## [3,] -0.110 -0.053 1.000 .
## [4,] -0.620 -0.520 -0.264 1.000
round(elu$U,3)
## 4 x 4 Matrix of class "dtrMatrix"
## [,1] [,2] [,3] [,4]
## [1,] 1.640 0.108 -0.180 -1.016
## [2,] . 1.403 -0.074 -0.729
## [3,] . . 1.075 -0.284
## [4,] . . . 1.000
Multiplying the Correlation Matrix and the Inverse or the Inverse and the Correlation Matrix provides an identity matrix (diagonal of 1s) which is expected.
The package ‘Matrix’ is used to generate the Lower and Upper matrices.
#Decompose L and U for the above Inverse Matrix
library(Matrix)
lum <- lu(inv)
invlu <- expand(lum)
invlu$L
## 4 x 4 Matrix of class "dtrMatrix" (unitriangular)
## [,1] [,2] [,3] [,4]
## [1,] 1.00000000 . . .
## [2,] 0.06615979 1.00000000 . .
## [3,] -0.10984545 -0.05287637 1.00000000 .
## [4,] -0.61990957 -0.51977208 -0.26384335 1.00000000
invlu$U
## 4 x 4 Matrix of class "dtrMatrix"
## [,1] [,2] [,3] [,4]
## [1,] 1.63967319 0.10848043 -0.18011064 -1.01644910
## [2,] . 1.40343330 -0.07420846 -0.72946544
## [3,] . . 1.07482192 -0.28358462
## [4,] . . . 1.00000000
#decomposing the correlation matrix
sublum <- lu(subcor)
sublu <- expand(sublum)
round(sublu$L,3)
## 4 x 4 Matrix of class "dtrMatrix" (unitriangular)
## [,1] [,2] [,3] [,4]
## [1,] 1.000 . . .
## [2,] 0.286 1.000 . .
## [3,] 0.261 0.126 1.000 .
## [4,] 0.614 0.390 0.064 1.000
round(sublu$U,3)
## 4 x 4 Matrix of class "dtrMatrix"
## [,1] [,2] [,3] [,4]
## [1,] 1.000 0.286 0.261 0.614
## [2,] . 0.918 0.116 0.359
## [3,] . . 0.917 0.059
## [4,] . . . 0.480
Many times, it makes sense to fit a closed form distribution to data. For the first variable that you selected which is skewed to the right, shift it so that the minimum value is above zero as necessary. Then load the MASS package and run fitdistr to fit an exponential probability density function. (See https://stat.ethz.ch/R-manual/R-devel/library/MASS/html/fitdistr.html ).
Find the optimal value of λ for this distribution, and then take 1000 samples from this exponential distribution using this value (e.g., rexp(1000, λ)). Plot a histogram and compare it with a histogram of your original variable. Using the exponential pdf, find the 5th and 95th percentiles using the cumulative distribution function (CDF). Also generate a 95% confidence interval from the empirical data, assuming normality. Finally, provide the empirical 5th percentile and 95th percentile of the data. Discuss.
#Decompose L and U for the above Inverse Matrix
library(MASS)
##
## Attaching package: 'MASS'
## The following object is masked from 'package:dplyr':
##
## select
min(train$BsmtFinSF12)
## [1] 0
train$BsmtFinSF122 <- train$BsmtFinSF12 + 1/10000
min(train$BsmtFinSF122)
## [1] 1e-04
#fit an exp dist
fitexpd <- fitdistr(train$BsmtFinSF122, "exponential")
lam <- fitexpd$estimate
print(lam)
## rate
## 0.002040029
s <- rexp(1000, lam)
#histogram of old and new
par(mfrow=c(1,2))
hist(train$BsmtFinSF12, main="Kaggle Data", xlab="TotBsmtFin (1 and 2)")
hist(s, main="Sampled Data")
The two distributions follow the same form with a lower peak in the sampling.
The CDF is $ P = 1 − e^-x$ which means that \(X = log(1-P)/-\lambda\)
# Obtain CDF for 5% and 95% for the sample data.
cdf_5 <- log(1 - .05)/-lam
cdf_95 <- log(1 - .95)/-lam
# obtain normality 5% and 95%
#this is done using quantiles which assume IID
quantile(train$BsmtFinSF12, 0.05)
## 5%
## 0
quantile(train$BsmtFinSF12, 0.95)
## 95%
## 1309
#Generate Confidence Interval
#Use RMISC to calculate Confidence Interval
library(Rmisc)
## Loading required package: lattice
## Loading required package: plyr
## -------------------------------------------------------------------------
## You have loaded plyr after dplyr - this is likely to cause problems.
## If you need functions from both plyr and dplyr, please load plyr first, then dplyr:
## library(plyr); library(dplyr)
## -------------------------------------------------------------------------
##
## Attaching package: 'plyr'
## The following object is masked from 'package:purrr':
##
## compact
## The following objects are masked from 'package:dplyr':
##
## arrange, count, desc, failwith, id, mutate, rename, summarise,
## summarize
CI(train$BsmtFinSF12, 0.95)
## upper mean lower
## 514.6308 490.1890 465.7472
print(cdf_5)
## rate
## 25.14342
print(cdf_95)
## rate
## 1468.475
This means that the lower value is 466 and the upper is 515 for the Kaggle dataset. The CDF from the sample data provides a range of 26 and 1469. This means that the exponential function is NOT a good model to fit to the data. The spread of the empirical data in the exponential is encompassing nearly all the data vs the actual normal bounds for the original data.
Build some type of multiple regression model and submit your model to the competition board. Provide your complete model summary and results with analysis. Report your Kaggle.com user name and score. Reminder that new variables were genrated at the start of this analysis for use here and include: AllSF, SFLotRatio and PriceperSF.
The first step is to split the data into a training set and a test set.
# Split data in reg and train
#using ntrain from the 2nd question
n <- nrow(ntrain) #1460 rows of data
shuffle_ntrain <- ntrain[sample(n), ]
train_indices <- 1:round(0.7 * n)
trainsub <- shuffle_ntrain[train_indices, ]
test_indices <- (round(0.7 * n) + 1):n
testsub <- shuffle_ntrain[test_indices, ]
testsub[is.na(testsub)] <- 0
ntrain[is.na(ntrain)] <- 0
The next step is to create a multiple regression model. This is just an expansion of the lm() function inside r and providing more than 1 independent variable for anlaysis. In this case, the first model was generated by passing in all the numeric variables into the lm() function. Upon further inspection, the independent variables were whittled down to select only those of significance and a 2nd pass model was generated.
#fit a linear regression model
newdatacor = cor(trainsub)
corrplot(newdatacor)
model <- lm(SalePrice ~ ., data=trainsub)
summary(model)
##
## Call:
## lm(formula = SalePrice ~ ., data = trainsub)
##
## Residuals:
## Min 1Q Median 3Q Max
## -402344 -17631 -2378 15330 212543
##
## Coefficients: (3 not defined because of singularities)
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 8.119e+05 1.594e+06 0.509 0.610631
## Id 7.515e-01 2.472e+00 0.304 0.761142
## MSSubClass -1.656e+02 3.121e+01 -5.306 1.39e-07 ***
## LotFrontage -3.409e+01 3.247e+01 -1.050 0.294037
## LotArea 5.046e-01 1.112e-01 4.536 6.45e-06 ***
## OverallQual 1.782e+04 1.367e+03 13.040 < 2e-16 ***
## OverallCond 5.727e+03 1.204e+03 4.758 2.25e-06 ***
## YearBuilt 3.598e+02 6.938e+01 5.185 2.62e-07 ***
## YearRemodAdd 9.675e+01 7.583e+01 1.276 0.202291
## MasVnrArea 3.094e+01 6.688e+00 4.626 4.23e-06 ***
## BsmtFinSF1 1.575e+01 5.010e+00 3.145 0.001713 **
## BsmtFinSF2 5.593e+00 7.962e+00 0.702 0.482600
## BsmtUnfSF 6.673e+00 4.454e+00 1.498 0.134434
## TotalBsmtSF NA NA NA NA
## X1stFlrSF 3.789e+01 6.566e+00 5.772 1.05e-08 ***
## X2ndFlrSF 3.672e+01 5.778e+00 6.355 3.17e-10 ***
## LowQualFinSF 1.376e+01 2.160e+01 0.637 0.524110
## GrLivArea NA NA NA NA
## BsmtFullBath 9.806e+03 2.872e+03 3.415 0.000664 ***
## BsmtHalfBath -2.044e+03 4.624e+03 -0.442 0.658630
## FullBath 7.097e+03 3.172e+03 2.237 0.025480 *
## HalfBath -1.645e+03 3.021e+03 -0.545 0.586193
## BedroomAbvGr -1.143e+04 1.923e+03 -5.942 3.89e-09 ***
## KitchenAbvGr -1.727e+04 5.767e+03 -2.995 0.002813 **
## TotRmsAbvGrd 8.437e+03 1.415e+03 5.965 3.41e-09 ***
## Fireplaces 2.152e+03 1.994e+03 1.079 0.280658
## GarageYrBlt -1.246e+01 3.099e+00 -4.021 6.24e-05 ***
## GarageCars 1.525e+04 3.322e+03 4.590 4.99e-06 ***
## GarageArea 3.402e+00 1.092e+01 0.312 0.755455
## WoodDeckSF 3.757e+01 9.561e+00 3.929 9.11e-05 ***
## OpenPorchSF 1.779e+01 1.740e+01 1.022 0.306882
## EnclosedPorch 3.382e+01 1.940e+01 1.743 0.081670 .
## X3SsnPorch 1.689e+01 3.139e+01 0.538 0.590753
## ScreenPorch 8.361e+01 1.869e+01 4.474 8.59e-06 ***
## PoolArea -1.178e+02 2.566e+01 -4.591 4.98e-06 ***
## MiscVal 3.027e-01 1.994e+00 0.152 0.879408
## MoSold 4.201e+00 3.902e+02 0.011 0.991412
## YrSold -8.817e+02 7.938e+02 -1.111 0.266985
## BsmtFinSF12 NA NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 32900 on 986 degrees of freedom
## Multiple R-squared: 0.8309, Adjusted R-squared: 0.8249
## F-statistic: 138.4 on 35 and 986 DF, p-value: < 2.2e-16
plot(model$residuals ~ model$fitted.values)
#extract variables that are significant and rerun model
sigvars <- data.frame(summary(model)$coef[summary(model)$coef[,4] <= .05, 4])
sigvars <- add_rownames(sigvars, "vars")
## Warning: Deprecated, use tibble::rownames_to_column() instead.
colist<-dplyr::pull(sigvars, vars)
idx <- match(colist, names(trainsub))
trainsub2 <- cbind(trainsub[,idx], trainsub['SalePrice'])
model2<-lm(SalePrice ~ ., data=trainsub2)
summary(model2)
##
## Call:
## lm(formula = SalePrice ~ ., data = trainsub2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -397793 -17285 -2394 14752 210450
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -7.465e+05 1.079e+05 -6.918 8.18e-12 ***
## MSSubClass -1.628e+02 2.972e+01 -5.477 5.47e-08 ***
## LotArea 5.062e-01 1.085e-01 4.667 3.47e-06 ***
## OverallQual 1.881e+04 1.290e+03 14.580 < 2e-16 ***
## OverallCond 5.877e+03 1.087e+03 5.404 8.12e-08 ***
## YearBuilt 3.482e+02 5.491e+01 6.342 3.43e-10 ***
## MasVnrArea 2.940e+01 6.565e+00 4.478 8.41e-06 ***
## BsmtFinSF1 9.396e+00 3.311e+00 2.838 0.004634 **
## X1stFlrSF 4.567e+01 5.396e+00 8.464 < 2e-16 ***
## X2ndFlrSF 3.773e+01 4.847e+00 7.783 1.76e-14 ***
## BsmtFullBath 1.080e+04 2.613e+03 4.132 3.89e-05 ***
## FullBath 8.236e+03 2.897e+03 2.843 0.004560 **
## BedroomAbvGr -1.179e+04 1.870e+03 -6.306 4.30e-10 ***
## KitchenAbvGr -2.096e+04 5.492e+03 -3.816 0.000144 ***
## TotRmsAbvGrd 8.187e+03 1.365e+03 5.998 2.78e-09 ***
## GarageYrBlt -1.319e+01 2.955e+00 -4.463 9.00e-06 ***
## GarageCars 1.636e+04 2.319e+03 7.056 3.19e-12 ***
## WoodDeckSF 3.710e+01 9.339e+00 3.973 7.61e-05 ***
## ScreenPorch 8.212e+01 1.809e+01 4.540 6.32e-06 ***
## PoolArea -1.159e+02 2.529e+01 -4.583 5.17e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 32840 on 1002 degrees of freedom
## Multiple R-squared: 0.8288, Adjusted R-squared: 0.8256
## F-statistic: 255.4 on 19 and 1002 DF, p-value: < 2.2e-16
par(mfrow=c(1,2))
plot(model2$residuals ~ model2$fitted.values, main="New Reduced Var Model")
abline(h = 0)
plot(model$residuals ~ model$fitted.values, main="Orignal Model All Vars")
abline(h = 0)
The first model has an Adjusted R-squared: 0.8255 which indicates a good model but it seems like it might be overfitting the data since only 16 of the 80+ variables are actually significant. The second model has a lower Adjusted R-squared: 0.8243 but it relies on less variables to achieve this result which makes it a better model that relies less on overfitting. We could do a third pass by selecting only those that are below for example p<0.01 instead of p<0.05 which was used to select the variables.
The final step was to apply the linear model tot he test data provided by Kaggle for submission. In this case the training set had 1460 records and the test data had 1459 records.
#predict
#select only numeric columns
test <- select_if(test, is.numeric)
test[is.na(test)] <- 0
pred2<-predict(model2,test)
#export data for Kaggle
kaggle <- as.data.frame(cbind(test$Id, pred2))
colnames(kaggle) <- c("Id", "SalePrice")
write.csv(kaggle, file = "Kaggle_Submission2.csv", quote=FALSE, row.names=FALSE)
After doing a second pass on my model, I was able to get predictions for the test data for the kaggle competition. In submitting my predictions, I got a score of 0.24257 for my username cspitmit03 which gave me a rank of 4786/5325 which is the 10th percentile. Note that when I added my own variables, my score actually dropped in half which means that they weren’t effective in producing better predictions.
# Split data in reg and train
#using ntrain from the 2nd question
knitr::include_graphics('Submission.png')