# Import data
data <- read.csv("data/census2.csv")
# Load packages
library(ggplot2)
library(dplyr)
# Create a new variable for the number of immigrants and the percent of immigrants in total population
data <-
data %>%
mutate(popImmigrant = popTotal - popNative,
popImmigrant_percent = (popImmigrant / popTotal)*100,
popImmigrantHL = ifelse(popImmigrant_percent >= mean(popImmigrant_percent),
"equal or above ave", "below ave"))
# Count number of towns of above and below average percent of immigrant population
data %>%
count(popImmigrantHL)
## # A tibble: 2 x 2
## popImmigrantHL n
## <chr> <int>
## 1 below ave 37
## 2 equal or above ave 27
Colum chart
# Percent of immigrants in total population
data %>%
filter(Year == 2016) %>%
ggplot(aes(reorder(x = Town, popImmigrant_percent), y = popImmigrant_percent, fill = benchM)) +
geom_col(show.legend = FALSE) +
coord_flip() +
labs(title = "Lakes Region Towns by Percent of Immigrants in Total Population",
subtitle = "during 2012-2016",
x = NULL,
y = NULL,
caption = "Data source: American Community Survey, 5 year estiamtes")

# Size of Immigrant population
data %>%
filter(Year == 2016, !Town %in% c("New Hampshire", "United States")) %>%
ggplot(aes(reorder(x = Town, popImmigrant), y = popImmigrant, fill = benchM)) +
geom_col(show.legend = FALSE) +
coord_flip() +
labs(title = "Lakes Region Towns by Immigrant Population",
subtitle = "during 2012-2016",
x = NULL,
y = NULL,
caption = "Data source: American Community Survey, 5 year estimates")

Compare towns of above and below average percent of immigrant population
# Compare median income
data %>%
filter(Year == 2016) %>%
ggplot(aes(x = medianIncome, fill = popImmigrantHL)) +
geom_density(alpha = 0.3)

# Compare education
data %>%
filter(Year == 2016) %>%
ggplot(aes(x = popBA_percent, fill = popImmigrantHL)) +
geom_density(alpha = 0.3)

# Compare poverty rate
data %>%
filter(Year == 2016) %>%
ggplot(aes(x = popPov_percent, fill = popImmigrantHL)) +
geom_density(alpha = 0.3)
