J<-read.csv("DATOS_JARDIN.csv", sep = ";")
CAR<-as.data.frame(prop.table(table(J$CARGO))*100)
colnames(CAR)<-c("CARGO", "PORCENTAJE")
K<-c("Administrativo", "Oficial", "Docente", "Pregrado", "Posgrado")
Z<-c("0", "1", "2", "3", "4")
library(ggplot2)
ggplot(CAR, aes(x = CARGO, y = PORCENTAJE, fill = CARGO)) + geom_bar(stat = "identity", width = 0.8) + scale_fill_discrete(name = "", breaks = Z, labels = K) + theme(legend.position = "bottom", legend.background = element_rect(fill = "white", size = 0.5, linetype = "solid", colour = "black")) + ggtitle("Cargo en la Universidad") + xlab("Cargos") + ylab("% ENCUESTADOS") + theme(plot.title = element_text(hjust = 0.5)) + geom_text(aes(y = PORCENTAJE, label = paste(round(PORCENTAJE, 1), "%")), position = position_dodge(width = 0.5), size=4, vjust=0.5, hjust=-0.2) + scale_x_discrete(breaks = Z, labels = c("", "", "", "", "")) + scale_y_continuous(breaks = seq(0, 80, by = 10), limits = c(0,80)) + coord_flip()

tiempo<-as.data.frame(prop.table(table(J$TIEMPO))*100)
colnames(tiempo)<-c("TIEMPO", "PORCENTAJE")
K<-c("Menos de 1 año", "1-3 años", "4-6 años", "7-10 años", "Más de 10 años")
Z<-c("0", "1", "2", "3", "4")
library(ggplot2)
ggplot(tiempo, aes(x = TIEMPO, y = PORCENTAJE, fill = TIEMPO)) + geom_bar(stat = "identity", width = 0.8) + scale_fill_discrete(name = "", breaks = Z, labels = K) + theme(legend.position = "bottom", legend.background = element_rect(fill = "white", size = 0.5, linetype = "solid", colour = "black")) + ggtitle("Tiempo que lleva en el cargo") + xlab("Tiempo") + ylab("% ENCUESTADOS") + theme(plot.title = element_text(hjust = 0.5)) + geom_text(aes(y = PORCENTAJE, label = paste(round(PORCENTAJE, 1), "%")), position = position_dodge(width = 0.5), size=4, vjust=0.5, hjust=-0.2) + scale_x_discrete(breaks = Z, labels = c("", "", "", "", "")) + scale_y_continuous(breaks = seq(0, 40, by = 10), limits = c(0,40)) + coord_flip()

LS0tDQp0aXRsZTogIkVOQ1VFU1RBIEpBUkRJTiINCm91dHB1dDogaHRtbF9ub3RlYm9vaw0KLS0tDQogDQoNCmBgYHtyfQ0KSjwtcmVhZC5jc3YoIkRBVE9TX0pBUkRJTi5jc3YiLCBzZXAgPSAiOyIpDQoNCmBgYA0KDQoNCmBgYHtyfQ0KQ0FSPC1hcy5kYXRhLmZyYW1lKHByb3AudGFibGUodGFibGUoSiRDQVJHTykpKjEwMCkNCmNvbG5hbWVzKENBUik8LWMoIkNBUkdPIiwgIlBPUkNFTlRBSkUiKQ0KDQpLPC1jKCJBZG1pbmlzdHJhdGl2byIsICJPZmljaWFsIiwgIkRvY2VudGUiLCAiUHJlZ3JhZG8iLCAiUG9zZ3JhZG8iKQ0KWjwtYygiMCIsICIxIiwgIjIiLCAiMyIsICI0IikNCmxpYnJhcnkoZ2dwbG90MikNCmdncGxvdChDQVIsIGFlcyh4ID0gQ0FSR08sIHkgPSBQT1JDRU5UQUpFLCBmaWxsID0gQ0FSR08pKSArIGdlb21fYmFyKHN0YXQgPSAiaWRlbnRpdHkiLCB3aWR0aCA9IDAuOCkgKyBzY2FsZV9maWxsX2Rpc2NyZXRlKG5hbWUgPSAiIiwgYnJlYWtzID0gWiwgbGFiZWxzID0gSykgKyB0aGVtZShsZWdlbmQucG9zaXRpb24gPSAiYm90dG9tIiwgbGVnZW5kLmJhY2tncm91bmQgPSBlbGVtZW50X3JlY3QoZmlsbCA9ICJ3aGl0ZSIsIHNpemUgPSAwLjUsIGxpbmV0eXBlID0gInNvbGlkIiwgY29sb3VyID0gImJsYWNrIikpICsgZ2d0aXRsZSgiQ2FyZ28gZW4gbGEgVW5pdmVyc2lkYWQiKSArIHhsYWIoIkNhcmdvcyIpICsgeWxhYigiJSBFTkNVRVNUQURPUyIpICsgdGhlbWUocGxvdC50aXRsZSA9IGVsZW1lbnRfdGV4dChoanVzdCA9IDAuNSkpICsgZ2VvbV90ZXh0KGFlcyh5ID0gUE9SQ0VOVEFKRSwgbGFiZWwgPSBwYXN0ZShyb3VuZChQT1JDRU5UQUpFLCAxKSwgIiUiKSksIHBvc2l0aW9uID0gcG9zaXRpb25fZG9kZ2Uod2lkdGggPSAwLjUpLCBzaXplPTQsIHZqdXN0PTAuNSwgaGp1c3Q9LTAuMikgKyBzY2FsZV94X2Rpc2NyZXRlKGJyZWFrcyA9IFosIGxhYmVscyA9IGMoIiIsICIiLCAiIiwgIiIsICIiKSkgKyBzY2FsZV95X2NvbnRpbnVvdXMoYnJlYWtzID0gc2VxKDAsIDgwLCBieSA9IDEwKSwgbGltaXRzID0gYygwLDgwKSkgKyBjb29yZF9mbGlwKCkNCmBgYA0KDQoNCmBgYHtyfQ0KdGllbXBvPC1hcy5kYXRhLmZyYW1lKHByb3AudGFibGUodGFibGUoSiRUSUVNUE8pKSoxMDApDQpjb2xuYW1lcyh0aWVtcG8pPC1jKCJUSUVNUE8iLCAiUE9SQ0VOVEFKRSIpDQoNCks8LWMoIk1lbm9zIGRlIDEgYfFvIiwgIjEtMyBh8W9zIiwgIjQtNiBh8W9zIiwgIjctMTAgYfFvcyIsICJN4XMgZGUgMTAgYfFvcyIpDQpaPC1jKCIwIiwgIjEiLCAiMiIsICIzIiwgIjQiKQ0KbGlicmFyeShnZ3Bsb3QyKQ0KZ2dwbG90KHRpZW1wbywgYWVzKHggPSBUSUVNUE8sIHkgPSBQT1JDRU5UQUpFLCBmaWxsID0gVElFTVBPKSkgKyBnZW9tX2JhcihzdGF0ID0gImlkZW50aXR5Iiwgd2lkdGggPSAwLjgpICsgc2NhbGVfZmlsbF9kaXNjcmV0ZShuYW1lID0gIiIsIGJyZWFrcyA9IFosIGxhYmVscyA9IEspICsgdGhlbWUobGVnZW5kLnBvc2l0aW9uID0gImJvdHRvbSIsIGxlZ2VuZC5iYWNrZ3JvdW5kID0gZWxlbWVudF9yZWN0KGZpbGwgPSAid2hpdGUiLCBzaXplID0gMC41LCBsaW5ldHlwZSA9ICJzb2xpZCIsIGNvbG91ciA9ICJibGFjayIpKSArIGdndGl0bGUoIlRpZW1wbyBxdWUgbGxldmEgZW4gZWwgY2FyZ28iKSArIHhsYWIoIlRpZW1wbyIpICsgeWxhYigiJSBFTkNVRVNUQURPUyIpICsgdGhlbWUocGxvdC50aXRsZSA9IGVsZW1lbnRfdGV4dChoanVzdCA9IDAuNSkpICsgZ2VvbV90ZXh0KGFlcyh5ID0gUE9SQ0VOVEFKRSwgbGFiZWwgPSBwYXN0ZShyb3VuZChQT1JDRU5UQUpFLCAxKSwgIiUiKSksIHBvc2l0aW9uID0gcG9zaXRpb25fZG9kZ2Uod2lkdGggPSAwLjUpLCBzaXplPTQsIHZqdXN0PTAuNSwgaGp1c3Q9LTAuMikgKyBzY2FsZV94X2Rpc2NyZXRlKGJyZWFrcyA9IFosIGxhYmVscyA9IGMoIiIsICIiLCAiIiwgIiIsICIiKSkgKyBzY2FsZV95X2NvbnRpbnVvdXMoYnJlYWtzID0gc2VxKDAsIDQwLCBieSA9IDEwKSwgbGltaXRzID0gYygwLDQwKSkgKyBjb29yZF9mbGlwKCkNCmBgYA0KDQo=