14.3 15.3 13.8 15.4 15.5 14.6 13.9 15.0 14.6 13.8
mostra <-c(14.3,15.3,13.8,15.4,15.5,
14.6,13.9,15.0,14.6,13.8)
(m<-mean(mostra))
## [1] 14.62
(s<-sd(mostra))
## [1] 0.6629899
(n<-length(mostra))
## [1] 10
nc <-.95
(talfa <- qt((1-nc)/2, df=n-1))
## [1] -2.262157
(radi<-talfa*s/sqrt(n))
## [1] -0.4742744
m+c(1,-1)*radi
## [1] 14.14573 15.09427
#Comprovació
t.test(mostra)
##
## One Sample t-test
##
## data: mostra
## t = 69.733, df = 9, p-value = 1.296e-13
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 14.14573 15.09427
## sample estimates:
## mean of x
## 14.62
mu<-14
(t<-(m-mu)/(s/sqrt(n)))
## [1] 2.957228
1-pt(t, df=n-1)
## [1] 0.008015773
alfa<-0.05
qt(alfa,.05,lower.tail = FALSE)
## [1] 1.140436e+19
sigma <- 0.7
k2 <- (n-1)*s^2/0.7^2
(p<-pchisq(k2, df=n-1))
## [1] 0.4732404
2*min(p,1-p)
## [1] 0.9464808
mostra <-c(1.3,-1.1,2.8,2.1,1.1,-0.3,-2.3,2.9)
(m<-mean(mostra))
## [1] 0.8125
(s<-sd(mostra))
## [1] 1.884855
(n<-length(mostra))
## [1] 8
nc <-.90
(talfa <- qt((1-nc)/2, df=n-1))
## [1] -1.894579
(radi<-talfa*s/sqrt(n))
## [1] -1.262541
m+c(1,-1)*radi
## [1] -0.4500413 2.0750413
#Comprovació
t.test(mostra, conf.level = nc)
##
## One Sample t-test
##
## data: mostra
## t = 1.2192, df = 7, p-value = 0.2622
## alternative hypothesis: true mean is not equal to 0
## 90 percent confidence interval:
## -0.4500413 2.0750413
## sample estimates:
## mean of x
## 0.8125
Assumint la normalitat de la distribució de l’error:
mu<-0
(t<-(m-mu)/(s/sqrt(n)))
## [1] 1.219243
(p<-pt(t, df=n-1))
## [1] 0.8688814
2*min(p, 1-p)
## [1] 0.2622373
alfa<-0.01
qt(alfa/2,df=n-1,lower.tail = FALSE)
## [1] 3.499483
#comprovació
t.test(mostra)
##
## One Sample t-test
##
## data: mostra
## t = 1.2192, df = 7, p-value = 0.2622
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## -0.7632783 2.3882783
## sample estimates:
## mean of x
## 0.8125
Oisnet 5.2 5.7 4.6 4.9 4.7 6.1 5.6 3.9 5.5 5.1
Issatop 4.5 4.8 5.2 3.7 4.4 5.1 4.9 4.5 4.0 3.2
Oisnet<-c(5.2, 5.7, 4.6, 4.9, 4.7,
6.1, 5.6, 3.9, 5.5, 5.1)
mostra <-Oisnet
(m<-mean(mostra))
## [1] 5.13
(s<-sd(mostra))
## [1] 0.6377913
(n<-length(mostra))
## [1] 10
nc <-.90
(talfa <- qt((1-nc)/2, df=n-1))
## [1] -1.833113
(radi<-talfa*s/sqrt(n))
## [1] -0.3697156
m+c(1,-1)*radi
## [1] 4.760284 5.499716
#Comprovació
t.test(mostra, conf.level = nc)
##
## One Sample t-test
##
## data: mostra
## t = 25.435, df = 9, p-value = 1.08e-09
## alternative hypothesis: true mean is not equal to 0
## 90 percent confidence interval:
## 4.760284 5.499716
## sample estimates:
## mean of x
## 5.13
Issatop<-c(4.5, 4.8, 5.2, 3.7, 4.4,
5.1, 4.9, 4.5, 4.0, 3.2)
mostra <-Oisnet-Issatop
(m<-mean(mostra))
## [1] 0.7
(s<-sd(mostra))
## [1] 0.8164966
(n<-length(mostra))
## [1] 10
nc <-.90
(talfa <- qt((1-nc)/2, df=n-1))
## [1] -1.833113
(radi<-talfa*s/sqrt(n))
## [1] -0.4733077
m+c(1,-1)*radi
## [1] 0.2266923 1.1733077
#Comprovació
t.test(x=Oisnet,y=Issatop, paired = TRUE, conf.level = nc)
##
## Paired t-test
##
## data: Oisnet and Issatop
## t = 2.7111, df = 9, p-value = 0.02395
## alternative hypothesis: true difference in means is not equal to 0
## 90 percent confidence interval:
## 0.2266923 1.1733077
## sample estimates:
## mean of the differences
## 0.7
x<-125
n<-200
(p0<-x/n)
## [1] 0.625
nc <-.90
(zalfa <- qnorm((1-nc)/2))
## [1] -1.644854
# no màxima indeterminació
radi <- zalfa*sqrt(p0*(1-p0)/n)
p0+c(1,-1)*radi
## [1] 0.5686923 0.6813077
# màxima indeterminació
radi <- zalfa*sqrt(.5*.5/n)
p0+c(1,-1)*radi
## [1] 0.5668456 0.6831544
# comprovació
prop.test(x,n,conf.level=nc,correct=FALSE)
##
## 1-sample proportions test without continuity correction
##
## data: x out of n, null probability 0.5
## X-squared = 12.5, df = 1, p-value = 0.000407
## alternative hypothesis: true p is not equal to 0.5
## 90 percent confidence interval:
## 0.5673760 0.6792872
## sample estimates:
## p
## 0.625
C. ocellata 2.30 2.34 2.28 2.33 2.28 2.36 2.19 2.40 2.37
C. caerulea 2.43 2.29 2.53 2.55 2.35 2.29 2.31 2.47 2.50
ocellata<- c(2.30, 2.34, 2.28, 2.33, 2.28, 2.36, 2.19, 2.40, 2.37)
caerulea<- c(2.43, 2.29, 2.53, 2.55, 2.35, 2.29, 2.31, 2.47, 2.50)
mean(ocellata)
## [1] 2.316667
mean(caerulea)
## [1] 2.413333
(dif<-mean(ocellata)-mean(caerulea))
## [1] -0.09666667
(s1<-sd(ocellata))
## [1] 0.06264982
(s2<-sd(caerulea))
## [1] 0.105119
(n1<-length(ocellata))
## [1] 9
(n2<-length(caerulea))
## [1] 9
(st2<-((n1-1)*s1^2+(n2-1)*s2^2)/(n1+n2-2))
## [1] 0.0074875
#comprovació
s1^2
## [1] 0.003925
s2^2
## [1] 0.01105
mean(c(s1^2,s2^2))
## [1] 0.0074875
#continuo
sqrt(st2)
## [1] 0.08653034
(talfa <- qt((1-nc)/2, df=n1+n2-1))
## [1] -1.739607
sqrt(1/n1+1/n2)
## [1] 0.4714045
(radi<-talfa*sqrt(st2)*sqrt(1/n1+1/n2))
## [1] -0.07095994
dif+c(1,-1)*radi
## [1] -0.16762661 -0.02570673
D’altra banda, s’han observat 200 exemplars de C. ocellata i en cada cas s’ha anotat si els individus es podien associar a una determinada esponja S. En concret, s’ha verificat que dels 200 exemplars, 30 es podien associar a S.
x<-30
n<-200
(p0<-x/n)
## [1] 0.15
nc <-.90
(zalfa <- qnorm((1-nc)/2))
## [1] -1.644854
# no màxima indeterminació
radi <- zalfa*sqrt(p0*(1-p0)/n)
p0+c(1,-1)*radi
## [1] 0.1084695 0.1915305
# màxima indeterminació
radi <- zalfa*sqrt(.5*.5/n)
p0+c(1,-1)*radi
## [1] 0.09184564 0.20815436
# comprovació
prop.test(x,n,conf.level=nc,correct=FALSE)
##
## 1-sample proportions test without continuity correction
##
## data: x out of n, null probability 0.5
## X-squared = 98, df = 1, p-value < 2.2e-16
## alternative hypothesis: true p is not equal to 0.5
## 90 percent confidence interval:
## 0.1131554 0.1961876
## sample estimates:
## p
## 0.15