\(\int _{ 0 }^{ \pi }{ \int _{ 0 }^{ 1 }{ \int _{ 0 }^{ z }{ (sin(yz))\quad dx\quad dy\quad dz\quad = } } } \int _{ 0 }^{ \pi }{ \int _{ 0 }^{ 1 }{ (x*cos(yz)\quad |\begin{matrix} z \\ 0 \end{matrix}dy\quad dz\quad } } \\ \qquad \qquad \qquad \qquad \qquad \qquad \qquad \quad =\quad \int _{ 0 }^{ \pi }{ \int _{ 0 }^{ 1 }{ (z*cos(yz)\quad dy\quad dz\quad } } \\ \qquad \qquad \qquad \qquad \qquad \qquad \qquad \quad =\quad \int _{ 0 }^{ \pi }{ (-z*z*sin(z))\quad dz\quad } \\ \qquad \qquad \qquad \qquad \qquad \qquad \qquad \quad let\quad u={ z }^{ 2 },\quad du=2zdz;\quad dv=sinz,\quad v=-cos(z)\\ \int _{ 0 }^{ \pi }{ (-z*z*sin(z))\quad dz\quad } =\quad -{ z }^{ 2 }*(-cos(z))\quad +\quad \int _{ 0 }^{ \pi }{ 2z*cos(z)dz } \\ \qquad \qquad \qquad \qquad \qquad \qquad \qquad let\quad u={ z }^{ },\quad du=dz;\quad dv=cos(z),\quad v=sin(z)\\ \qquad \qquad \qquad \qquad \qquad \quad =\quad { z }^{ 2 }*cos(z)\quad +\quad z*cos(z)\quad -\quad \int _{ 0 }^{ \pi }{ sin(z)dz } \\ \qquad \qquad \qquad \qquad \qquad \quad =\quad { z }^{ 2 }*cos(z)\quad +\quad z*cos(z)\quad +\quad cos(z)\quad |\begin{matrix} \pi \\ 0 \end{matrix}\\ \qquad \qquad \qquad \qquad \qquad \quad =\quad -{ \pi }^{ 2 }-\pi -2\)