library(ggplot2)
library(lattice)
library(magrittr)
library(dplyr)
library(tidyverse)
dta02 <- read.csv("nlsy86long.csv", header = TRUE)
ggplot(dta02, aes(read, math, color = sex))+
geom_point()+
geom_smooth(method = lm)+
facet_grid(.~race)
閱讀和數學成績呈正相關(沒有明顯性別或種族差異)
dta02 %>%
gather(subject,score,8:9) %>%
ggplot(.,aes(year,score,color=sex)) +
stat_summary(fun.data = mean_se , geom = "pointrange",
position = position_dodge(0.3)) +
facet_grid(.~subject)+
theme_light()
整體而言,男女生在數學和閱讀成績上未有明顯差異。
dta03 <- read.csv("alcohol_age.csv", header = TRUE) %>%
mutate(Over21 = ifelse(Age >= 21, "Yes", "No"))
# 圖一
xyplot(Alcohol ~ Age, group = Over21,
data =dta03, type = c("g", "r", "p"),
xlab = "Age (year)", ylab = "Mortality rate from alcohol abuse (per 100,000)")
# 圖二
ggplot(dta03, aes(Age, Alcohol, color = Over21)) +
geom_point(na.rm=TRUE) +
geom_segment(aes(x = 19, xend = 21, y = 1.032, yend = 1.032), color = "tomato")+
geom_segment(aes(x = 21, xend = 23, y = 1.483, yend = 1.483), color = "turquoise")+
labs(x = "Age(year)", y = "Mortality rate from alcohol abuse (per 100,000)")
圖二能清楚的表達是否達到法定年齡的死亡率差異,是更好的選擇。
dta04 <- read.table("dta04.txt", skip = 3,
col.names = c("Country","25-34","35-44","45-54","55-64","65-74"),
check.names = FALSE) %>% gather(Age, Rate, 2:6)
ggplot(dta04, aes(Age, Rate))+
geom_boxplot()+
labs(x = "Age", y = "Deaths per 100,000 from male suicides")
dta05 <- read.table("coping.txt", header = TRUE)
# 情境與情緒的關聯
dta05 %>% gather(emotion,score,1:4) %>%
ggplot(.,aes(situation,score,color = emotion)) +
stat_summary(fun.data = mean_se,position = position_dodge(0.3))+
theme_bw()+
labs(x="Situation",y="Score")
不論哪種情境annoy的分數都最高。
#策略與情境的關聯
dta05 %>% gather(coping,score,5:8) %>%
ggplot(.,aes(situation,score,color=coping)) +
stat_summary(fun.data = mean_se,position = position_dodge(0.3))+
theme_bw()+
labs(x="Situation",y="Score")
dta07 <- read.table("beautyCourseEval.txt", header = TRUE) %>%
mutate(CourseID = factor(courseID),
Gender = factor(sex, levels = c(0, 1), labels = c("Male", "Female")))
xyplot(eval ~ beauty | CourseID, group = Gender,
data = dta07, type = c("g", "r", "p"),
index.cond = function(x, y) coef(lm(y ~ x))[2],
xlab = "Beauty score", ylab = "Course evaluation score",
lattice.options = list(panel.error = "warning"), auto.key = list(column = 2))
library(sas7bdat)
dta08 <- sas7bdat::read.sas7bdat("sales.sas7bdat")
dta8 <- dta08 %>%
mutate(region = factor(region, levels = 1:4,
labels = c("Northern", "Southern", "Eastern","Western")),
district = factor(district, levels = 1:5,
labels = c("North East", "South East", "South West", "North West", "Central West")),
quarter = factor(quarter, levels = 1:4,
labels = c("1st", "2nd", "3rd", "4th")),
month = factor(month, levels = 1:12,
labels = c("Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec")))
dta8$sales <- replace(dta8$sales, dta8$sales < 0, 0)
ggplot(dta8, aes(month, sales, color = product)) +
geom_point() +
geom_line(aes(group = product)) +
facet_wrap(~ year) +
labs(x = "Month",y = "sales") +
theme_bw()