library(sf)
library(tmap)
library(tigris)
options(tigris_class = "sf")
ny_county <- counties("NY", cb = TRUE)
Using FIPS code '36' for state 'NY'
NYmap <- geo_join(ny_county, NY_Climate2, by = "NAME")
st_crs<- : replacing crs does not reproject data; use st_transform for that
tm_shape(NYmap) + tm_polygons("Pop2", palette = "Greens") + tm_text("NAME", size = "AREA")

library(plyr)
library(dplyr)
library(knitr)
library(DT)
library(xtable)
nyef5 <- NY_Climate2 %>% 
  arrange(desc(Pop2)) %>%
  top_n(n = 10)
Selecting by Pop2
kable(nyef5)


|NAME        |Pop2 |
|:-----------|:----|
|Bronx       |9    |
|Erie        |9    |
|Kings       |9    |
|Nassau      |9    |
|Queens      |9    |
|Suffolk     |9    |
|Westchester |9    |
|Monroe      |8    |
|New York    |5    |
|Onondaga    |5    |
|Richmond    |5    |
library(texreg)
nyef1 <- lm(Income ~ Pop, data = NY_Efficiency)
htmlreg(nyef1)
Statistical models
Model 1
(Intercept) 23.32***
(3.47)
Pop2 0.05
(6.18)
Pop3 3.50
(6.27)
Pop4 7.66
(5.15)
Pop5 6.73
(4.89)
Pop8 3.68
(6.74)
Pop9 29.36***
(3.56)
R2 0.07
Adj. R2 0.07
Num. obs. 2299
RMSE 34.68
p < 0.001, p < 0.01, p < 0.05
with(NY_Efficiency, plot(Pop, Income))
abline(nyef1)

only using the first two of 7 regression coefficients

library(merTools)
library(lme4)
library(ggplot2)
library(Zelig)
NY_Efficiency$Pop <- as.factor(NY_Efficiency$Pop)
z.nye2 <- zelig(Unemploy ~ Pop, model = "poisson", data = NY_Efficiency, cite = F)
z.nye2$setx(Pop = "1")
z.nye2$setx1(Pop = "9")
z.nye2$sim()
z.nye2$graph()

fd2 <- z.nye2$get_qi(xvalue="x1", qi="fd")
summary(fd2)
       V1        
 Min.   :-3.121  
 1st Qu.:-2.372  
 Median :-2.192  
 Mean   :-2.200  
 3rd Qu.:-2.029  
 Max.   :-1.408  
library(merTools)
library(lme4)
library(ggplot2)
library(Zelig)
library(texreg)
NY_Efficiency$Pop <- as.factor(NY_Efficiency$Pop)
z.nye3 <- zelig(Edu ~ Pop, model = "poisson", data = NY_Efficiency, cite = F)
z.nye3$setx(Pop = "1")
z.nye3$setx1(Pop = "9")
z.nye3$sim()
htmlreg(z.nye3, doctype = FALSE)
Statistical models
Model 1
(Intercept) 3.11***
(0.02)
Pop2 0.12**
(0.04)
Pop3 0.21***
(0.04)
Pop4 0.53***
(0.03)
Pop5 0.35***
(0.03)
Pop8 0.53***
(0.03)
Pop9 0.57***
(0.02)
AIC 23037.31
BIC 23077.51
Log Likelihood -11511.65
Deviance 10558.68
Num. obs. 2307
p < 0.001, p < 0.01, p < 0.05
fd3 <- z.nye3$get_qi(xvalue="x1", qi="fd")
summary(fd3)
   V1       

Min. :15.73
1st Qu.:16.80
Median :17.14
Mean :17.12
3rd Qu.:17.45
Max. :18.56

library(plyr)
library(knitr)
library(DT)
library(xtable)
nyef4 <- NY_Efficiency %>% 
  dplyr::group_by(County)%>%
  dplyr::summarize(p_county = n()) %>%
  arrange(desc(p_county)) %>%
  top_n(n = 10)
Selecting by p_county
kable(nyef4)


|County      | p_county|
|:-----------|--------:|
|NEW YORK    |      502|
|KINGS       |      418|
|BRONX       |      304|
|QUEENS      |      271|
|WESTCHESTER |      192|
|SUFFOLK     |       87|
|RICHMOND    |       77|
|NASSAU      |       73|
|ALBANY      |       57|
|ERIE        |       42|
library(ggplot2)
library(texreg)
NY_Efficiency$TPCost <- as.numeric(gsub('[$,]', '', NY_Efficiency$TPCost))
nyef9 <- lm(TPCost ~ Pop, data = NY_Efficiency)
htmlreg(nyef9)
Statistical models
Model 1
(Intercept) 472356.56
(331769.37)
Pop2 478437.35
(607040.58)
Pop3 599028.19
(616640.06)
Pop4 1029039.31*
(503284.92)
Pop5 513437.04
(477253.08)
Pop8 1640769.71*
(663538.73)
Pop9 715484.87*
(341121.69)
R2 0.00
Adj. R2 0.00
Num. obs. 2307
RMSE 3447848.38
p < 0.001, p < 0.01, p < 0.05
ggplot(NY_Efficiency, aes(x = Pop, y = TPCost)) + 
  geom_point()

library(Zelig)
NY_Energy_Efficiency$FYSavings <- as.numeric(gsub('[$,]', '', NY_Energy_Efficiency$FYSavings))
NY_Energy_Efficiency$TPCost <- as.numeric(gsub('[$,]', '', NY_Energy_Efficiency$TPCost))
z.nyef6 <- zelig(FYSavings ~ TPCost, model = "poisson", data = NY_Energy_Efficiency, cite = F) 
summary(z.nyef6)
Model: 

Call:
z5$zelig(formula = FYSavings ~ TPCost, data = NY_Energy_Efficiency)

Deviance Residuals: 
    Min       1Q   Median       3Q  
-3167.1   -318.6   -196.8    -15.0  
    Max  
 5258.4  

Coefficients:
             Estimate Std. Error z value
(Intercept) 1.124e+01  7.392e-05  152076
TPCost      7.464e-08  3.917e-12   19056
            Pr(>|z|)
(Intercept)   <2e-16
TPCost        <2e-16

(Dispersion parameter for poisson family taken to be 1)

    Null deviance: 528356365  on 2306  degrees of freedom
Residual deviance: 377712188  on 2305  degrees of freedom
  (6 observations deleted due to missingness)
AIC: 377737792

Number of Fisher Scoring iterations: 7

Next step: Use 'setx' method
z.nyef6$setx()
z.nyef6$sim()
plot(z.nyef6)

library(texreg)
NY_Energy_Efficiency$TPCost <- as.numeric(gsub('[$,]', '', NY_Energy_Efficiency$TPCost))
nyef8 <- lm(EEReduction ~ TPCost, data = NY_Energy_Efficiency)
htmlreg(nyef8)
Statistical models
Model 1
(Intercept) 495711.92***
(33059.32)
TPCost 0.13***
(0.01)
R2 0.08
Adj. R2 0.08
Num. obs. 2307
RMSE 1504240.08
p < 0.001, p < 0.01, p < 0.05
with(NY_Energy_Efficiency, plot(TPCost, EEReduction))
abline(nyef8)

LS0tDQp0aXRsZTogIkV4dHJhIENyZWRpdCBBcHBlbmRpeCINCm91dHB1dDogaHRtbF9ub3RlYm9vaw0KLS0tDQoNCg0KDQpgYGB7ciBmaWcuaGVpZ2h0PTgsIGZpZy53aWR0aD04fQ0KbGlicmFyeShzZikNCmxpYnJhcnkodG1hcCkNCmxpYnJhcnkodGlncmlzKQ0KDQpvcHRpb25zKHRpZ3Jpc19jbGFzcyA9ICJzZiIpDQoNCm55X2NvdW50eSA8LSBjb3VudGllcygiTlkiLCBjYiA9IFRSVUUpDQoNCk5ZbWFwIDwtIGdlb19qb2luKG55X2NvdW50eSwgTllfQ2xpbWF0ZTIsIGJ5ID0gIk5BTUUiKQ0KDQp0bV9zaGFwZShOWW1hcCkgKyB0bV9wb2x5Z29ucygiUG9wMiIsIHBhbGV0dGUgPSAiR3JlZW5zIikgKyB0bV90ZXh0KCJOQU1FIiwgc2l6ZSA9ICJBUkVBIikNCmBgYA0KDQoNCmBgYHtyfQ0KbGlicmFyeShwbHlyKQ0KbGlicmFyeShkcGx5cikNCmxpYnJhcnkoa25pdHIpDQpsaWJyYXJ5KERUKQ0KbGlicmFyeSh4dGFibGUpDQoNCm55ZWY1IDwtIE5ZX0NsaW1hdGUyICU+JSANCiAgYXJyYW5nZShkZXNjKFBvcDIpKSAlPiUNCiAgdG9wX24obiA9IDEwKQ0KDQprYWJsZShueWVmNSkNCmBgYA0KDQpgYGB7ciBmaWcuaGVpZ2h0PTUsIGZpZy53aWR0aD01LCByZXN1bHRzPSdhc2lzJ30NCmxpYnJhcnkodGV4cmVnKQ0KDQpueWVmMSA8LSBsbShJbmNvbWUgfiBQb3AsIGRhdGEgPSBOWV9FZmZpY2llbmN5KQ0KaHRtbHJlZyhueWVmMSkNCg0Kd2l0aChOWV9FZmZpY2llbmN5LCBwbG90KFBvcCwgSW5jb21lKSkNCmFibGluZShueWVmMSkNCmBgYA0KDQpgYGB7ciBmaWcuaGVpZ2h0PTUsIGZpZy53aWR0aD01fQ0KbGlicmFyeShtZXJUb29scykNCmxpYnJhcnkobG1lNCkNCmxpYnJhcnkoZ2dwbG90MikNCg0KbGlicmFyeShaZWxpZykNCk5ZX0VmZmljaWVuY3kkUG9wIDwtIGFzLmZhY3RvcihOWV9FZmZpY2llbmN5JFBvcCkNCg0Kei5ueWUyIDwtIHplbGlnKFVuZW1wbG95IH4gUG9wLCBtb2RlbCA9ICJwb2lzc29uIiwgZGF0YSA9IE5ZX0VmZmljaWVuY3ksIGNpdGUgPSBGKQ0KDQp6Lm55ZTIkc2V0eChQb3AgPSAiMSIpDQp6Lm55ZTIkc2V0eDEoUG9wID0gIjkiKQ0Kei5ueWUyJHNpbSgpDQp6Lm55ZTIkZ3JhcGgoKQ0KDQpmZDIgPC0gei5ueWUyJGdldF9xaSh4dmFsdWU9IngxIiwgcWk9ImZkIikNCnN1bW1hcnkoZmQyKQ0KYGBgDQoNCmBgYHtyIHJlc3VsdHM9J2FzaXMnfQ0KbGlicmFyeShtZXJUb29scykNCmxpYnJhcnkobG1lNCkNCmxpYnJhcnkoZ2dwbG90MikNCmxpYnJhcnkoWmVsaWcpDQpsaWJyYXJ5KHRleHJlZykNCg0KTllfRWZmaWNpZW5jeSRQb3AgPC0gYXMuZmFjdG9yKE5ZX0VmZmljaWVuY3kkUG9wKQ0KDQp6Lm55ZTMgPC0gemVsaWcoRWR1IH4gUG9wLCBtb2RlbCA9ICJwb2lzc29uIiwgZGF0YSA9IE5ZX0VmZmljaWVuY3ksIGNpdGUgPSBGKQ0KDQp6Lm55ZTMkc2V0eChQb3AgPSAiMSIpDQp6Lm55ZTMkc2V0eDEoUG9wID0gIjkiKQ0Kei5ueWUzJHNpbSgpDQpodG1scmVnKHoubnllMywgZG9jdHlwZSA9IEZBTFNFKQ0KDQpmZDMgPC0gei5ueWUzJGdldF9xaSh4dmFsdWU9IngxIiwgcWk9ImZkIikNCnN1bW1hcnkoZmQzKQ0KYGBgDQoNCg0KYGBge3J9DQpsaWJyYXJ5KHBseXIpDQpsaWJyYXJ5KGtuaXRyKQ0KbGlicmFyeShEVCkNCmxpYnJhcnkoeHRhYmxlKQ0KDQpueWVmNCA8LSBOWV9FZmZpY2llbmN5ICU+JSANCiAgZHBseXI6Omdyb3VwX2J5KENvdW50eSklPiUNCiAgZHBseXI6OnN1bW1hcml6ZShwX2NvdW50eSA9IG4oKSkgJT4lDQogIGFycmFuZ2UoZGVzYyhwX2NvdW50eSkpICU+JQ0KICB0b3BfbihuID0gMTApDQoNCmthYmxlKG55ZWY0KQ0KYGBgDQoNCmBgYHtyIHJlc3VsdHM9J2FzaXMnfQ0KbGlicmFyeShnZ3Bsb3QyKQ0KbGlicmFyeSh0ZXhyZWcpDQoNCk5ZX0VmZmljaWVuY3kkVFBDb3N0IDwtIGFzLm51bWVyaWMoZ3N1YignWyQsXScsICcnLCBOWV9FZmZpY2llbmN5JFRQQ29zdCkpDQoNCm55ZWY5IDwtIGxtKFRQQ29zdCB+IFBvcCwgZGF0YSA9IE5ZX0VmZmljaWVuY3kpDQpodG1scmVnKG55ZWY5KQ0KDQpnZ3Bsb3QoTllfRWZmaWNpZW5jeSwgYWVzKHggPSBQb3AsIHkgPSBUUENvc3QpKSArIA0KICBnZW9tX3BvaW50KCkNCg0KYGBgDQoNCmBgYHtyIGZpZy5oZWlnaHQ9NSwgZmlnLndpZHRoPTV9DQpsaWJyYXJ5KFplbGlnKQ0KDQpOWV9FbmVyZ3lfRWZmaWNpZW5jeSRGWVNhdmluZ3MgPC0gYXMubnVtZXJpYyhnc3ViKCdbJCxdJywgJycsIE5ZX0VuZXJneV9FZmZpY2llbmN5JEZZU2F2aW5ncykpDQoNCk5ZX0VuZXJneV9FZmZpY2llbmN5JFRQQ29zdCA8LSBhcy5udW1lcmljKGdzdWIoJ1skLF0nLCAnJywgTllfRW5lcmd5X0VmZmljaWVuY3kkVFBDb3N0KSkNCg0Kei5ueWVmNiA8LSB6ZWxpZyhGWVNhdmluZ3MgfiBUUENvc3QsIG1vZGVsID0gInBvaXNzb24iLCBkYXRhID0gTllfRW5lcmd5X0VmZmljaWVuY3ksIGNpdGUgPSBGKSANCnN1bW1hcnkoei5ueWVmNikNCg0KDQp6Lm55ZWY2JHNldHgoKQ0Kei5ueWVmNiRzaW0oKQ0KcGxvdCh6Lm55ZWY2KQ0KYGBgDQoNCg0KYGBge3IgcmVzdWx0cz0nYXNpcyd9DQpsaWJyYXJ5KHRleHJlZykNCg0KTllfRW5lcmd5X0VmZmljaWVuY3kkVFBDb3N0IDwtIGFzLm51bWVyaWMoZ3N1YignWyQsXScsICcnLCBOWV9FbmVyZ3lfRWZmaWNpZW5jeSRUUENvc3QpKQ0KDQpueWVmOCA8LSBsbShFRVJlZHVjdGlvbiB+IFRQQ29zdCwgZGF0YSA9IE5ZX0VuZXJneV9FZmZpY2llbmN5KQ0KaHRtbHJlZyhueWVmOCkNCg0Kd2l0aChOWV9FbmVyZ3lfRWZmaWNpZW5jeSwgcGxvdChUUENvc3QsIEVFUmVkdWN0aW9uKSkNCmFibGluZShueWVmOCkNCmBgYA0KDQo=