WebTest Name:(Test)
Answer: y=3.489004+0.2340668*x
x<-c(5.6, 6.3,7,7.7,8.4)
y<-c(8.8, 12.4,14.8,18.2,20.8)
summary(lm(x~y))
##
## Call:
## lm(formula = x ~ y)
##
## Residuals:
## 1 2 3 4 5
## 0.05121 -0.09143 0.04681 -0.04901 0.04241
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.489004 0.125618 27.77 0.000102 ***
## y 0.234066 0.008061 29.04 8.97e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.0761 on 3 degrees of freedom
## Multiple R-squared: 0.9965, Adjusted R-squared: 0.9953
## F-statistic: 843.1 on 1 and 3 DF, p-value: 8.971e-05
plot(lm(x~y))
2.Find all local maxima, local minima, and saddle points for the function given below. Write your answer(s) in the form (x,y,z). Separate multiple points with a comma. \(f\left( x,y \right) \quad =24x-6x{ y }^{ 2 }-8{ y }^{ 3 }\)
Answer: The maximum and the minimum mast occur at either a critical point or on the boundary of the region.
\(\frac { df }{ dx } \quad =24-6{ y }^{ 2 }=0,\quad y=2,-2\) \(\frac { df }{ dy } \quad =-12x{ y }^{ }-\quad 24{ y }^{ 2 }=\quad -12*y(x+2y)\quad =\quad 0,\quad y=0,\quad x=-2y\)
So critical points are (4,2) and (-4,-2).
Maximum mast: \(f\left( 4,-2 \right) =24*4-6*4*{ (-2) }^{ 2 }-8*({ -2) }^{ 3 }=64\)
Minimum mast: \(f\left( -4,2 \right) =24*(-4)-6*(-4)*{ (2) }^{ 2 }-8*({ 2) }^{ 3 }=-8\)
3.A grocery store sells two brands of a product, the “house” brand and a “name” brand. The manager estimates that if she sells the “house” brand for x dollars and the “name” brand for y dollars, she will be able to sell 81- 21x + 17y units of the “house” brand and 40 + 11x- 23y units of the “name” brand.
Step 1. Find the revenue function R ( x, y ).
Answer: R ( x, y ) = (81- 21x + 17y)x + (81- 21x + 17y)y
Step 2. What is the revenue if she sells the “house” brand for $2.30 and the “name” brand for $4.10?
x=2.3 y=4.1 Answer: R(2.3,4.1) = 655.36
4.A company has a plant in Los Angeles and a plant in Denver. The firm is committed to produce a total of 96 units of a product each week. The total weekly cost is given by \(c\left( x,y \right) \quad =\frac { 1 }{ 6 } { x }^{ 2 }\quad +\quad \frac { 1 }{ 6 } { y }^{ 2 }\quad +\quad 7x\quad +\quad 25y\quad +\quad 700\), where x is the number of units produced in Los Angeles and y is the number of units produced in Denver. How many units should be produced in each plant to minimize the total weekly cost?
Answer: units produced in Los Angeles : \(\frac { dC }{ dx } \quad =\frac { 1 }{ 3 } { x }^{ }\quad +\quad 7\quad =\quad 0\quad ,\quad x\quad =\quad -21\)
units produced in Denver: \(\frac { dC }{ dy } \quad =\frac { 1 }{ 3 } y^{ }\quad +\quad 25\quad =\quad 0\quad ,\quad y\quad =\quad -75\)
Write your answer in exact form without decimals.
Answer: \(\iint _{ R }^{ }{ { (e }^{ 8x+3y } } )dA\quad =\quad \int _{ 2 }^{ 4 }{ \int _{ 2 }^{ 4 }{ { (e }^{ 8x+3y })\quad dxdy } } \\ \qquad \qquad \qquad \qquad =\quad \int _{ 2 }^{ 4 }{ \frac { { e }^{ 8*4+3y } }{ 8 } } -\quad \frac { { e }^{ 8*2+3y } }{ 8 } dy\\ \qquad \qquad \qquad \qquad =\quad \frac { { e }^{ 8*4+3*4 } }{ 8*3 } -\frac { { e }^{ 8*2+3*4 } }{ 8*3 } -\frac { { e }^{ 8*2+3*4 } }{ 8*3 } +\frac { { e }^{ 8*2+3*2 } }{ 8*3 } \\ \qquad \qquad \qquad \qquad =\quad \frac { 1 }{ 24 } \quad ({ e }^{ 44 }-{ e }^{ 38 }-{ e }^{ 28 }-{ e }^{ 28 })\)