Given that
\(cosx=\sum_{n=0}^{\infty}(-1)^n*\frac{x^{2n}}{(2n)!}\)
substitute \(x^2\) for x in the series, giving
\(cos(x^2)=\sum_{n=1}^{\infty}(-1)^n*\frac{(x^2)^{2n}}{(2n)!}= 1-\frac{x^4}{2!} + \frac{x^8}{4!} - \frac{x^12}{6!}+\frac{x^{16}}{8!}-...\)
Given that
\(e^x=\sum_{n=0}^{\infty} \frac{x^n}{n!}\)
substitute \(-x\) for \(x\) in the series, giving
\(e^{-x}=\sum_{n=0}^{\infty} \frac{(-x)^n}{n!}=1-\frac{x}{1}+\frac{x^2}{2!}-\frac{x^3}{3!}+\frac{x^4}{4!}-...\)
Given that
\(sinx=\sum_{n=0}^{\infty}(-1)^n*\frac{x^{2n+1}}{(2n+1)!}\)
substitute \(2x+3\) for x in the series, giving
\(sin(2x+3)=\sum_{n=0}^{\infty}(-1)^n*\frac{(2x+3)^{2n+1}}{(2n+1)!} = 2x+3 -\frac{(2x+3)^3}{3!} +\frac{(2x+3)^5}{5!}-\frac{(2x+3)^7}{7!}+...\)
Given \(tan^{−1}x=\sum_{n=0}^{\infty}(-1)^n*\frac{x^{2n+1}}{2n+1}\)
substitute \(x/2\) for x in the series, giving
\(tan^{−1}x/2=\sum_{n=0}^{\infty}(-1)^n*\frac{(x/2)^{2n+1}}{2n+1}= 1-\frac{(x/2)^3}{3} + \frac{(x/2)^5}{5!} - \frac{(x/2)^7}{7}+\frac{(x/2)^{9}}{9}-...\)
Let’s apply the following theorem
\(f(x)*g(x)=(\sum_{n=0}^{\infty}a_n*x^n)*(\sum_{n=0}^{\infty}b_n*x^n)\)
Given
\(e^x=\sum_{n=0}^{\infty} \frac{x^n}{n!}\)
and
\(sinx=\sum_{n=0}^{\infty}(-1)^n*\frac{x^{2n+1}}{(2n+1)!}\)
we’ve got
\(e^x sin x=(\sum_{n=0}^{\infty} \frac{x^n}{n!})*(\sum_{n=0}^{\infty}(-1)^n*\frac{x^{2n+1}}{(2n+1)!}) = (1+x+\frac{x^2}{2}+\frac{x^3}{3}+...)*(1-\frac{x^3}{3!}+\frac{x^5}{5!}+\frac{x^7}{7!}-...)= (1-\frac{x^3}{3!}+\frac{x^5}{5!}+\frac{x^7}{7!}-...) + x*(1-\frac{x^3}{3!}+\frac{x^5}{5!}+\frac{x^7}{7!}-...)+\frac{x^2}{2}*(1-\frac{x^3}{3!}+\frac{x^5}{5!}+\frac{x^7}{7!}-...)+\frac{x^3}{3}*(1-\frac{x^3}{3!}+\frac{x^5}{5!}+\frac{x^7}{7!}-...)+...\)
Let’s apply the following theorem
\(f(x)*g(x)=(\sum_{n=0}^{\infty}a_n*x^n)*(\sum_{n=0}^{\infty}b_n*x^n)\)
Given
\((1+x)^k=\sum_{n=0}^{\infty}\frac{k*(k-1)...(k-(n-1))}{n!}x^n\)
and
\(cosx=\sum_{n=0}^{\infty}(-1)^n*\frac{x^{2n}}{(2n)!}\)
we’ve got
\((1 + x)^{1/2} cos x= (\sum_{n=0}^{\infty}\frac{\frac{1}{2}*(\frac{1}{2}-1)...(\frac{1}{2}-(n-1))}{n!}x^n)*(\sum_{n=0}^{\infty}(-1)^n*\frac{x^{2n}}{(2n)!})\)