Relationships between soil colour and composition

pH KCl

mod <- lm(my_dat$ph_kcl ~ my_dat$hue + my_dat$value + my_dat$chroma)
summary(mod)
## 
## Call:
## lm(formula = my_dat$ph_kcl ~ my_dat$hue + my_dat$value + my_dat$chroma)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.2390 -1.0536 -0.0992  0.9776  3.3364 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      -0.1004     1.3313  -0.075   0.9400    
## my_dat$hue5YR    -0.9747     0.8105  -1.203   0.2311    
## my_dat$hue7.5YR  -1.1993     0.2637  -4.547 1.14e-05 ***
## my_dat$value      0.9245     0.1734   5.332 3.64e-07 ***
## my_dat$chroma     0.2790     0.1209   2.308   0.0224 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.339 on 145 degrees of freedom
## Multiple R-squared:  0.3536, Adjusted R-squared:  0.3358 
## F-statistic: 19.83 on 4 and 145 DF,  p-value: 4.857e-13

Conductivity

mod <- lm(my_dat$conductivity_ms ~ my_dat$hue + my_dat$value + my_dat$chroma)
summary(mod)
## 
## Call:
## lm(formula = my_dat$conductivity_ms ~ my_dat$hue + my_dat$value + 
##     my_dat$chroma)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -3.804 -1.465 -0.181  1.418  7.215 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)
## (Intercept)      0.38581    2.16573   0.178    0.859
## my_dat$hue5YR    0.27678    1.31851   0.210    0.834
## my_dat$hue7.5YR -0.09282    0.42907  -0.216    0.829
## my_dat$value     0.37531    0.28206   1.331    0.185
## my_dat$chroma    0.20767    0.19667   1.056    0.293
## 
## Residual standard error: 2.178 on 145 degrees of freedom
## Multiple R-squared:  0.02147,    Adjusted R-squared:  -0.005528 
## F-statistic: 0.7952 on 4 and 145 DF,  p-value: 0.5301

Acidity

mod <- lm(my_dat$acidity ~ my_dat$hue + my_dat$value + my_dat$chroma)
summary(mod)
## 
## Call:
## lm(formula = my_dat$acidity ~ my_dat$hue + my_dat$value + my_dat$chroma)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.4230 -0.5124 -0.1625  0.3168  3.7603 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      4.34133    0.84787   5.120 9.55e-07 ***
## my_dat$hue5YR   -0.11929    0.51619  -0.231   0.8176    
## my_dat$hue7.5YR  0.36467    0.16798   2.171   0.0316 *  
## my_dat$value    -0.54358    0.11042  -4.923 2.29e-06 ***
## my_dat$chroma   -0.13877    0.07699  -1.802   0.0736 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8527 on 145 degrees of freedom
## Multiple R-squared:  0.2244, Adjusted R-squared:  0.203 
## F-statistic: 10.49 on 4 and 145 DF,  p-value: 1.721e-07

Ca

mod <- lm(my_dat$Ca ~ my_dat$hue + my_dat$value + my_dat$chroma)
summary(mod)
## 
## Call:
## lm(formula = my_dat$Ca ~ my_dat$hue + my_dat$value + my_dat$chroma)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -10.638  -3.554  -1.517   0.430  44.971 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     -20.8830     8.1333  -2.568 0.011253 *  
## my_dat$hue5YR    -5.6761     4.9516  -1.146 0.253555    
## my_dat$hue7.5YR  -3.1958     1.6114  -1.983 0.049224 *  
## my_dat$value      3.6586     1.0593   3.454 0.000724 ***
## my_dat$chroma     1.6500     0.7386   2.234 0.027010 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8.18 on 145 degrees of freedom
## Multiple R-squared:  0.1662, Adjusted R-squared:  0.1432 
## F-statistic: 7.226 on 4 and 145 DF,  p-value: 2.466e-05

Mg

mod <- lm(my_dat$Mg ~ my_dat$hue + my_dat$value + my_dat$chroma)
summary(mod)
## 
## Call:
## lm(formula = my_dat$Mg ~ my_dat$hue + my_dat$value + my_dat$chroma)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -8.4489 -3.4204 -0.6576  2.8560 12.5374 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      -5.2896     4.4459  -1.190 0.236073    
## my_dat$hue5YR    -3.4307     2.7067  -1.268 0.207002    
## my_dat$hue7.5YR  -2.6931     0.8808  -3.058 0.002658 ** 
## my_dat$value      1.4786     0.5790   2.554 0.011690 *  
## my_dat$chroma     1.3720     0.4037   3.398 0.000875 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.471 on 145 degrees of freedom
## Multiple R-squared:  0.2303, Adjusted R-squared:  0.2091 
## F-statistic: 10.85 on 4 and 145 DF,  p-value: 1.01e-07

Na

mod <- lm(my_dat$Na ~ my_dat$hue + my_dat$value + my_dat$chroma)
summary(mod)
## 
## Call:
## lm(formula = my_dat$Na ~ my_dat$hue + my_dat$value + my_dat$chroma)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2402.0  -968.8  -154.5   964.6  4419.3 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)  
## (Intercept)     -1175.83    1332.47  -0.882   0.3790  
## my_dat$hue5YR     451.03     811.21   0.556   0.5791  
## my_dat$hue7.5YR   -38.96     263.99  -0.148   0.8829  
## my_dat$value      442.06     173.54   2.547   0.0119 *
## my_dat$chroma     210.37     121.00   1.739   0.0842 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1340 on 145 degrees of freedom
## Multiple R-squared:  0.06299,    Adjusted R-squared:  0.03714 
## F-statistic: 2.437 on 4 and 145 DF,  p-value: 0.04978

K

mod <- lm(my_dat$K ~ my_dat$hue + my_dat$value + my_dat$chroma)
summary(mod)
## 
## Call:
## lm(formula = my_dat$K ~ my_dat$hue + my_dat$value + my_dat$chroma)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -316.31  -87.11  -34.34   68.21  770.63 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       -55.87     138.22  -0.404   0.6867    
## my_dat$hue5YR    -140.41      84.15  -1.669   0.0974 .  
## my_dat$hue7.5YR   -97.52      27.38  -3.561   0.0005 ***
## my_dat$value       39.07      18.00   2.170   0.0316 *  
## my_dat$chroma      22.97      12.55   1.830   0.0693 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 139 on 145 degrees of freedom
## Multiple R-squared:  0.1903, Adjusted R-squared:  0.1679 
## F-statistic: 8.518 on 4 and 145 DF,  p-value: 3.346e-06

P

mod <- lm(my_dat$P ~ my_dat$hue + my_dat$value + my_dat$chroma)
summary(mod)
## 
## Call:
## lm(formula = my_dat$P ~ my_dat$hue + my_dat$value + my_dat$chroma)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -39.116 -16.080  -8.644  -0.148 207.313 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)
## (Intercept)       24.594     34.862   0.705    0.482
## my_dat$hue5YR    -26.968     21.224  -1.271    0.206
## my_dat$hue7.5YR  -11.296      6.907  -1.635    0.104
## my_dat$value       2.043      4.540   0.450    0.653
## my_dat$chroma      1.283      3.166   0.405    0.686
## 
## Residual standard error: 35.06 on 145 degrees of freedom
## Multiple R-squared:  0.03712,    Adjusted R-squared:  0.01056 
## F-statistic: 1.397 on 4 and 145 DF,  p-value: 0.2378

Olsen

mod <- lm(my_dat$Olsen ~ my_dat$hue + my_dat$value + my_dat$chroma)
summary(mod)
## 
## Call:
## lm(formula = my_dat$Olsen ~ my_dat$hue + my_dat$value + my_dat$chroma)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.8743 -1.8308 -0.4051  1.4803 10.1257 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      21.1955     2.5966   8.163 1.45e-13 ***
## my_dat$hue5YR    -4.9161     1.5808  -3.110 0.002254 ** 
## my_dat$hue7.5YR  -1.8480     0.5144  -3.592 0.000448 ***
## my_dat$value     -2.0217     0.3382  -5.978 1.67e-08 ***
## my_dat$chroma    -0.7057     0.2358  -2.993 0.003250 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.611 on 145 degrees of freedom
## Multiple R-squared:  0.2383, Adjusted R-squared:  0.2173 
## F-statistic: 11.34 on 4 and 145 DF,  p-value: 4.925e-08