Results
prolr <- predict(bmodel$oridinalModels$polr,VLBW_mat)
boxplot(as.numeric(as.character(prolr)) ~ VLBW_mat$apg1)

table(as.numeric(as.character(prolr)),VLBW_mat$apg1)
1 3 6 8
1 74 50 29 14 3 6 10 10 2 6 27 33 54 41 8 11 20 36 61
kp <- kappa2(cbind(as.numeric(as.character(prolr)),VLBW_mat$apg1),"unweighted")
pander::pander(kp$value)
0.2179
pr <- predict(bmodel$oridinalModels,VLBW_mat)
boxplot(pr[,1] ~ VLBW_mat$apg1)

tb <- table(as.integer(pr[,1]+0.5),VLBW_mat$apg1)
pander::pander(tb)
| 1 |
67 |
43 |
23 |
13 |
| 3 |
9 |
19 |
14 |
9 |
| 4 |
1 |
0 |
0 |
0 |
| 5 |
0 |
0 |
0 |
1 |
| 6 |
22 |
24 |
54 |
39 |
| 8 |
19 |
27 |
38 |
56 |
tb <- table(as.integer(pr[,1]+0.5),as.integer(pr[,2]+0.5))
pander::pander(tb)
| 1 |
129 |
15 |
0 |
0 |
0 |
2 |
| 3 |
4 |
44 |
0 |
2 |
0 |
1 |
| 4 |
1 |
0 |
0 |
0 |
0 |
0 |
| 5 |
0 |
1 |
0 |
0 |
0 |
0 |
| 6 |
10 |
5 |
1 |
83 |
1 |
39 |
| 8 |
2 |
3 |
1 |
0 |
0 |
134 |
kp <- kappa2(cbind(as.integer(pr[,1]+0.5),VLBW_mat$apg1),"unweighted")
pander::pander(kp$value)
0.2119
kp <- kappa2(cbind(as.integer(pr[,2]+0.5),VLBW_mat$apg1),"unweighted")
pander::pander(kp$value)
0.2128
#The Times
pander::pander(cputimes)
- Fresa: 1.725
- LASSO: 0.0692
- RF: 0.2168
- SVM: 0.0398
pander::pander(featsize)
- Fresa: 7.82
- LASSO: 10.16
- Univ: 10.08
plotMAEEvolution(cp,16,main="Mean Absolute Error (MAE)", location="topright")

bp <- barPlotCiError(as.matrix(cp$CorTable),metricname="Kendall Correlation",thesets=thesets,themethod=theMethod,main="Kendall Correlation",offsets = c(0.5,0.05),args.legend = list(x = "bottomright"))

pander::pander(bp$barMatrix,caption = "Kendall Correlation",round = 3)
Kendall Correlation
| B:SWiMS |
0.229 |
| B:SWiMS(OLR) |
0.264 |
| B:SWiMS(SVM) |
0.238 |
| RF |
0.243 |
| RF(OLR) |
0.246 |
| RF(SVM) |
0.22 |
| LASSO |
0.28 |
| SVM |
0.257 |
| Univ.(SVM) |
0.232 |
| LASSO(SVM) |
0.221 |
pander::pander(bp$ciTable,caption = "Kendall Correlation with 95%CI",round = 3)
Kendall Correlation with 95%CI
| Regresion Method |
0.229 |
0.178 |
0.281 |
| Regresion Method |
0.264 |
0.25 |
0.278 |
| Regresion Method |
0.238 |
0.225 |
0.251 |
| Regresion Method |
0.243 |
0.229 |
0.256 |
| Regresion Method |
0.246 |
0.231 |
0.26 |
| Regresion Method |
0.22 |
0.206 |
0.233 |
| Regresion Method |
0.28 |
0.23 |
0.331 |
| Regresion Method |
0.257 |
0.244 |
0.271 |
| Regresion Method |
0.232 |
0.219 |
0.246 |
| Regresion Method |
0.221 |
0.208 |
0.233 |
bp <- barPlotCiError(as.matrix(cp$KappaTable),metricname="Kappa Agreement",thesets=thesets,themethod=theMethod,main="Kappa Agreement",offsets = c(0.5,0.05),args.legend = list(x = "bottomright"))

pander::pander(bp$barMatrix,caption = "Kappa Agreement",round = 3)
Kappa Agreement
| B:SWiMS |
0.12 |
| B:SWiMS(OLR) |
0.197 |
| B:SWiMS(SVM) |
0.126 |
| RF |
0.145 |
| RF(OLR) |
0.174 |
| RF(SVM) |
0.131 |
| LASSO |
0.012 |
| SVM |
0.184 |
| Univ.(SVM) |
0.107 |
| LASSO(SVM) |
0.155 |
pander::pander(bp$ciTable,caption = "Kappa Agreement with 95%CI",round = 3)
Kappa Agreement with 95%CI
| Regresion Method |
0.12 |
0.072 |
0.169 |
| Regresion Method |
0.197 |
0.147 |
0.248 |
| Regresion Method |
0.126 |
0.077 |
0.175 |
| Regresion Method |
0.145 |
0.094 |
0.195 |
| Regresion Method |
0.174 |
0.124 |
0.224 |
| Regresion Method |
0.131 |
0.082 |
0.181 |
| Regresion Method |
0.012 |
-0.014 |
0.038 |
| Regresion Method |
0.184 |
0.133 |
0.235 |
| Regresion Method |
0.107 |
0.059 |
0.155 |
| Regresion Method |
0.155 |
0.107 |
0.204 |
bp <- barPlotCiError(as.matrix(cp$MAETable),metricname="MAE",thesets=thesets,themethod=theMethod,main="MAE",offsets = c(0.5,5),args.legend = list(x = "bottomright"))

pander::pander(bp$barMatrix,caption = "MAE",round = 3)
MAE
| B:SWiMS |
2.296 |
| B:SWiMS(OLR) |
2.109 |
| B:SWiMS(SVM) |
2.308 |
| RF |
2.206 |
| RF(OLR) |
2.179 |
| RF(SVM) |
2.26 |
| LASSO |
2.103 |
| SVM |
2.205 |
| Univ.(SVM) |
2.345 |
| LASSO(SVM) |
2.339 |
pander::pander(bp$ciTable,caption = "MAE with 95%CI",round = 3)
MAE with 95%CI
| Regresion Method |
2.296 |
2.16 |
2.452 |
| Regresion Method |
2.109 |
1.983 |
2.252 |
| Regresion Method |
2.308 |
2.17 |
2.464 |
| Regresion Method |
2.206 |
2.075 |
2.355 |
| Regresion Method |
2.179 |
2.049 |
2.326 |
| Regresion Method |
2.26 |
2.126 |
2.413 |
| Regresion Method |
2.103 |
1.977 |
2.245 |
| Regresion Method |
2.205 |
2.074 |
2.354 |
| Regresion Method |
2.345 |
2.205 |
2.504 |
| Regresion Method |
2.339 |
2.2 |
2.497 |
bp <- barPlotCiError(as.matrix(cp$BiasTable),metricname="BIAS",thesets=thesets,themethod=theMethod,main="BIAS",offsets = c(0.5,0.5),args.legend = list(x = "bottomright"))

pander::pander(bp$barMatrix,caption = "BIAS",round = 3)
BIAS
| B:SWiMS |
0.357 |
| B:SWiMS(OLR) |
0.079 |
| B:SWiMS(SVM) |
0.276 |
| RF |
0.053 |
| RF(OLR) |
0.122 |
| RF(SVM) |
0.415 |
| LASSO |
-0.014 |
| SVM |
0.32 |
| Univ.(SVM) |
0.209 |
| LASSO(SVM) |
0.377 |
pander::pander(bp$ciTable,caption = "BIAS with 95%CI",round = 3)
BIAS with 95%CI
| Regresion Method |
0.357 |
0.077 |
0.637 |
| Regresion Method |
0.079 |
-0.194 |
0.353 |
| Regresion Method |
0.276 |
-0.01 |
0.562 |
| Regresion Method |
0.053 |
-0.224 |
0.331 |
| Regresion Method |
0.122 |
-0.155 |
0.4 |
| Regresion Method |
0.415 |
0.136 |
0.695 |
| Regresion Method |
-0.014 |
-0.233 |
0.204 |
| Regresion Method |
0.32 |
0.04 |
0.6 |
| Regresion Method |
0.209 |
-0.079 |
0.498 |
| Regresion Method |
0.377 |
0.083 |
0.67 |