8.8

Use the Taylor series given in Key Idea 32 to create the Taylor series of the given function.

  1. f(x) = cos(x^2)

Start with the expansion of cos(x) under idea 32:

\(cos(x)\ =\ \sum _{ n=0 }^{ \infty }{ { (-1) }^{ n } } \frac { { x }^{ 2n } }{ (2n)! }\)

Then substitute x^2 to get the new series. Voila!

\(cos(x)\ =\ 1-\ \frac { { x }^{ 2 } }{ 2! } +\frac { { x }^{ 4 } }{ 4! } +\frac { { x }^{ 6 } }{ 6! } +\ ...\)

\(cos({ x }^{ 2 })\ =\ 1-\ \frac { { ({ x }^{ 2 } })^{ 2n } }{ 2! } +\frac { { ({ x }^{ 2 } })^{ 2n } }{ 4! } +\frac { { ({ x }^{ 2 } })^{ 2n } }{ 6! } +\ ...\)

\(cos({ x }^{ 2 })\ =\ 1-\ \frac { { { x }^{ 4 } } }{ 2! } +\frac { { { x }^{ 8 } } }{ 4! } +\frac { { { x }^{ 12 } } }{ 6! } +\ ...\)


f <- makeFun(cos(x^2) ~ x)

plotFun(f(x) ~ x,  x.lim = range(-10,10), lwd=5)