jisa_results_all<-read.csv("results/results_default-experiment.csv")
jisa_results_per_class<-read.csv("results/results_per_subclass_default-experiment.csv")

Source code available on github (https://github.com/harpomaxx/dga-cnn)

Crosvalidation results using datataset from edna mySQL (accesed 05/02/2018)

Dataset available here

Results considering both classes Malware DGA and Normal

jisa_results_all %>% group_by(metric) %>% summarise(mean=mean(value),sd=sd(value))
jisa_results_all %>% filter(metric=="Sensitivity" | metric == "Specificity" | metric=="F1" | metric=="Balanced Accuracy") %>%
ggplot() +
  geom_boxplot(aes(x=metric,y=value,fill=metric))+
  theme_bw()+
   theme(axis.text.x = element_text(angle = 45, hjust = 1))

Results considering malware and normal subclasses

jisa_results_per_class %>% group_by(label) %>% summarise(mean=mean(recall),sd=sd(recall))
jisa_results_per_class %>%
  ggplot()+
  geom_boxplot(aes(x=label,y=recall,color=label))+
  theme_bw()+ylab("Sensitivity (AKA Recall)")+
  theme(axis.text.x = element_text(angle = 45, hjust = 1))+
  guides(color=FALSE)

LS0tCnRpdGxlOiAiSklTQSAyMDE4IHByZWxpbWluYXJ5IHJlc3VsdHMiCm91dHB1dDogaHRtbF9ub3RlYm9vawotLS0KYGBge3J9Cmppc2FfcmVzdWx0c19hbGw8LXJlYWQuY3N2KCJyZXN1bHRzL3Jlc3VsdHNfZGVmYXVsdC1leHBlcmltZW50LmNzdiIpCmppc2FfcmVzdWx0c19wZXJfY2xhc3M8LXJlYWQuY3N2KCJyZXN1bHRzL3Jlc3VsdHNfcGVyX3N1YmNsYXNzX2RlZmF1bHQtZXhwZXJpbWVudC5jc3YiKQpgYGAKClNvdXJjZSBjb2RlIGF2YWlsYWJsZSBvbiBnaXRodWIgKGh0dHBzOi8vZ2l0aHViLmNvbS9oYXJwb21heHgvZGdhLWNubikKCiMjIENyb3N2YWxpZGF0aW9uIHJlc3VsdHMgdXNpbmcgZGF0YXRhc2V0IGZyb20gZWRuYSBteVNRTCAoYWNjZXNlZCAwNS8wMi8yMDE4KQoKRGF0YXNldCBhdmFpbGFibGUgW2hlcmVdKGh0dHBzOi8vd3d3LmRyb3Bib3guY29tL3MvZXFiM2g0aTdwcWNyNTh6L0pJU0EyMDE4LmNzdi5nej9kbD0xKSAKCiMjIyBSZXN1bHRzIGNvbnNpZGVyaW5nIGJvdGggY2xhc3NlcyBNYWx3YXJlIERHQSBhbmQgTm9ybWFsCgpgYGB7cn0KamlzYV9yZXN1bHRzX2FsbCAlPiUgZ3JvdXBfYnkobWV0cmljKSAlPiUgc3VtbWFyaXNlKG1lYW49bWVhbih2YWx1ZSksc2Q9c2QodmFsdWUpKQoKamlzYV9yZXN1bHRzX2FsbCAlPiUgZmlsdGVyKG1ldHJpYz09IlNlbnNpdGl2aXR5IiB8IG1ldHJpYyA9PSAiU3BlY2lmaWNpdHkiIHwgbWV0cmljPT0iRjEiIHwgbWV0cmljPT0iQmFsYW5jZWQgQWNjdXJhY3kiKSAlPiUKCmdncGxvdCgpICsKICBnZW9tX2JveHBsb3QoYWVzKHg9bWV0cmljLHk9dmFsdWUsZmlsbD1tZXRyaWMpKSsKICB0aGVtZV9idygpKwogICB0aGVtZShheGlzLnRleHQueCA9IGVsZW1lbnRfdGV4dChhbmdsZSA9IDQ1LCBoanVzdCA9IDEpKQoKYGBgCiMjIyBSZXN1bHRzIGNvbnNpZGVyaW5nIG1hbHdhcmUgYW5kIG5vcm1hbCBzdWJjbGFzc2VzCgpgYGB7ciBmaWcuaGVpZ2h0PTYsIGZpZy53aWR0aD0xMH0KamlzYV9yZXN1bHRzX3Blcl9jbGFzcyAlPiUgZ3JvdXBfYnkobGFiZWwpICU+JSBzdW1tYXJpc2UobWVhbj1tZWFuKHJlY2FsbCksc2Q9c2QocmVjYWxsKSkKCmppc2FfcmVzdWx0c19wZXJfY2xhc3MgJT4lCiAgZ2dwbG90KCkrCiAgZ2VvbV9ib3hwbG90KGFlcyh4PWxhYmVsLHk9cmVjYWxsLGNvbG9yPWxhYmVsKSkrCiAgdGhlbWVfYncoKSt5bGFiKCJTZW5zaXRpdml0eSAoQUtBIFJlY2FsbCkiKSsKICB0aGVtZShheGlzLnRleHQueCA9IGVsZW1lbnRfdGV4dChhbmdsZSA9IDQ1LCBoanVzdCA9IDEpKSsKICBndWlkZXMoY29sb3I9RkFMU0UpCgpgYGAKCg==