Reading the Data
library(foreign)
library(reshape)
library(reshape2)
## 
## Attaching package: 'reshape2'
## The following objects are masked from 'package:reshape':
## 
##     colsplit, melt, recast
library(lme4)
## Loading required package: Matrix
## 
## Attaching package: 'Matrix'
## The following object is masked from 'package:reshape':
## 
##     expand
library(sjstats)
library(rockchalk)
library(lattice)
library(ggplot2)
library(psych)
## 
## Attaching package: 'psych'
## The following objects are masked from 'package:ggplot2':
## 
##     %+%, alpha
## The following objects are masked from 'package:sjstats':
## 
##     pca, phi
setwd("/Users/yahyaalshehri/Desktop/SAudi TIMSS")
###sss<- read.spss("asgsaum652.sav", to.data.frame = TRUE)
dtfile <- read.csv("TIMSS.csv")[,c("IDSCHOOL", "IDBOOK", "ITSEX","ASBM01A",                                           "ASBM01B", "ASBM01C", "ASBM01D","ASBM01E",
                            "ASBM01F", "ASBM01G", "ASBM01H","ASBM01I","ASMMAT03")]
head(dtfile)
##   IDSCHOOL IDBOOK ITSEX ASBM01A ASBM01B ASBM01C ASBM01D ASBM01E ASBM01F
## 1        1      9     1       1       4       4       2       2       2
## 2        1     10     1       1       4       4       2       2       2
## 3        1     11     1       1       4       4       2       2       2
## 4        1     12     1       1       4       4       2       2       2
## 5        1     13     1       2       4       4       2       2       2
## 6        1     14     1       1       4       4       2       2       2
##   ASBM01G ASBM01H ASBM01I ASMMAT03
## 1       2       2       3 374.9874
## 2       2       1       2 541.6871
## 3       2       1       1 427.7202
## 4       2       2       1 525.5990
## 5       2       2       2 452.4498
## 6      NA       2       1 539.5486
colnames(dtfile)
##  [1] "IDSCHOOL" "IDBOOK"   "ITSEX"    "ASBM01A"  "ASBM01B"  "ASBM01C" 
##  [7] "ASBM01D"  "ASBM01E"  "ASBM01F"  "ASBM01G"  "ASBM01H"  "ASBM01I" 
## [13] "ASMMAT03"
dtfile$IDSCHOOL <- as.factor(dtfile$IDSCHOOL)

dtfile$IDBOOK <- as.factor(dtfile$IDBOOK)

dtfile$Gender <- factor(dtfile$ITSEX)

dtfile$Gender <- factor(dtfile$ITSEX, levels = c(2,1), labels= c ("Male", "Female"))

with(dtfile, table(Gender, ITSEX))
##         ITSEX
## Gender      1    2
##   Male      0 2156
##   Female 2181    0
Summarize the Data
rockchalk::summarize(dtfile)
## Numeric variables
##             ITSEX    ASBM01A   ASBM01B   ASBM01C   ASBM01D   ASBM01E
## min           1         1         1         1         1         1   
## med           1         1         4         4         1         1   
## max           2         9         9         9         9         9   
## mean          1.50      1.68      3.37      3.49      2         2   
## sd            0.50      1.59      1.85      1.93      2.12      2.09
## skewness      0.01      3.32      1.18      1.22      2.55      2.54
## kurtosis     -2        11.80      2.59      2.29      5.52      5.60
## nobs       4337      4225      4236      4242      4252      4263   
## nmissing      0       112       101        95        85        74   
##            ASBM01F   ASBM01G   ASBM01H   ASBM01I   ASMMAT03
## min           1         1         1         1        40.78 
## med           1         1         1         1       384.41 
## max           9         9         9         9       722.22 
## mean          2.05      2.04      2.14      2.13    384.26 
## sd            2.08      2.08      2.11      2.02     90.28 
## skewness      2.55      2.53      2.36      2.35     -0.03 
## kurtosis      5.68      5.62      4.85      5.18     -0.12 
## nobs       4268      4269      4269      4282      4337    
## nmissing     69        68        68        55         0    
## 
## Nonnumeric variables
##          IDSCHOOL             IDBOOK       Gender       
##  116         :   44  3           :  324 Female: 2181    
##  84          :   43  9           :  321 Male  : 2156    
##  11          :   40  4           :  318 nobs  : 4337    
##  183         :   40  1           :  314 nmiss :    0    
##  (All Others): 4170  (All Others): 3060 entropy      : 1
##  nobs        : 4337  nobs        : 4337 normedEntropy: 1
##  nmiss       :    0  nmiss       :    0                 
##  entropy      : 7.48 entropy      : 3.8                 
##  normedEntropy: 0.99 normedEntropy: 1.0
summary(dtfile [,-c(1,2,3)])
##     ASBM01A         ASBM01B         ASBM01C         ASBM01D     
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:1.000   1st Qu.:2.000   1st Qu.:2.000   1st Qu.:1.000  
##  Median :1.000   Median :4.000   Median :4.000   Median :1.000  
##  Mean   :1.684   Mean   :3.371   Mean   :3.494   Mean   :2.001  
##  3rd Qu.:2.000   3rd Qu.:4.000   3rd Qu.:4.000   3rd Qu.:2.000  
##  Max.   :9.000   Max.   :9.000   Max.   :9.000   Max.   :9.000  
##  NA's   :112     NA's   :101     NA's   :95      NA's   :85     
##     ASBM01E         ASBM01F         ASBM01G         ASBM01H     
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:1.000   1st Qu.:1.000   1st Qu.:1.000   1st Qu.:1.000  
##  Median :1.000   Median :1.000   Median :1.000   Median :1.000  
##  Mean   :2.004   Mean   :2.048   Mean   :2.037   Mean   :2.142  
##  3rd Qu.:2.000   3rd Qu.:2.000   3rd Qu.:2.000   3rd Qu.:2.000  
##  Max.   :9.000   Max.   :9.000   Max.   :9.000   Max.   :9.000  
##  NA's   :74      NA's   :69      NA's   :68      NA's   :68     
##     ASBM01I         ASMMAT03         Gender    
##  Min.   :1.000   Min.   : 40.78   Male  :2156  
##  1st Qu.:1.000   1st Qu.:323.09   Female:2181  
##  Median :1.000   Median :384.41                
##  Mean   :2.133   Mean   :384.26                
##  3rd Qu.:3.000   3rd Qu.:446.29                
##  Max.   :9.000   Max.   :722.22                
##  NA's   :55
describe(dtfile [,-c(1,2,3)])
##          vars    n   mean    sd median trimmed   mad   min    max  range
## ASBM01A     1 4225   1.68  1.59   1.00    1.28  0.00  1.00   9.00   8.00
## ASBM01B     2 4236   3.37  1.85   4.00    3.23  0.00  1.00   9.00   8.00
## ASBM01C     3 4242   3.49  1.93   4.00    3.29  0.00  1.00   9.00   8.00
## ASBM01D     4 4252   2.00  2.12   1.00    1.43  0.00  1.00   9.00   8.00
## ASBM01E     5 4263   2.00  2.09   1.00    1.45  0.00  1.00   9.00   8.00
## ASBM01F     6 4268   2.05  2.08   1.00    1.51  0.00  1.00   9.00   8.00
## ASBM01G     7 4269   2.04  2.08   1.00    1.50  0.00  1.00   9.00   8.00
## ASBM01H     8 4269   2.14  2.11   1.00    1.62  0.00  1.00   9.00   8.00
## ASBM01I     9 4282   2.13  2.02   1.00    1.67  0.00  1.00   9.00   8.00
## ASMMAT03   10 4337 384.26 90.28 384.41  384.30 91.31 40.78 722.22 681.44
## Gender*    11 4337   1.50  0.50   2.00    1.50  0.00  1.00   2.00   1.00
##           skew kurtosis   se
## ASBM01A   3.32    11.80 0.02
## ASBM01B   1.18     2.59 0.03
## ASBM01C   1.22     2.29 0.03
## ASBM01D   2.55     5.52 0.03
## ASBM01E   2.54     5.60 0.03
## ASBM01F   2.55     5.68 0.03
## ASBM01G   2.53     5.62 0.03
## ASBM01H   2.36     4.85 0.03
## ASBM01I   2.35     5.18 0.03
## ASMMAT03 -0.03    -0.12 1.37
## Gender*  -0.01    -2.00 0.01

Ploting the Variables

hist(dtfile$ASBM01A)

hist(dtfile$ASBM01B)

hist(dtfile$ASBM01C)

hist(dtfile$ASBM01D)

hist(dtfile$ASBM01E)

hist(dtfile$ASBM01F)

hist(dtfile$ASBM01G)

hist(dtfile$ASBM01H)

hist(dtfile$ASBM01I)

hist(dtfile$ASMMAT03)

Multiple REgression Model

Regression_Model <- lm(ASMMAT03  ~  Gender  + IDSCHOOL+ ASBM01A
                       + ASBM01B + ASBM01C + ASBM01D + ASBM01E + ASBM01F
                       + ASBM01G + ASBM01H + ASBM01I , data = dtfile) 


summary(Regression_Model)
## 
## Call:
## lm(formula = ASMMAT03 ~ Gender + IDSCHOOL + ASBM01A + ASBM01B + 
##     ASBM01C + ASBM01D + ASBM01E + ASBM01F + ASBM01G + ASBM01H + 
##     ASBM01I, data = dtfile)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -254.430  -45.244   -0.145   46.625  255.655 
## 
## Coefficients: (1 not defined because of singularities)
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   562.7595    26.3226  21.379  < 2e-16 ***
## GenderFemale  -80.8641    29.7901  -2.714 0.006668 ** 
## IDSCHOOL2    -152.6410    31.7796  -4.803 1.62e-06 ***
## IDSCHOOL3    -239.2549    35.8911  -6.666 3.00e-11 ***
## IDSCHOOL4    -153.2201    38.5798  -3.972 7.27e-05 ***
## IDSCHOOL5    -144.7972    35.9285  -4.030 5.68e-05 ***
## IDSCHOOL6    -320.0644    33.5421  -9.542  < 2e-16 ***
## IDSCHOOL7      -1.1648    20.3316  -0.057 0.954318    
## IDSCHOOL8     -83.3419    20.4830  -4.069 4.82e-05 ***
## IDSCHOOL9      -7.4968    20.2829  -0.370 0.711692    
## IDSCHOOL10   -190.1840    29.5543  -6.435 1.39e-10 ***
## IDSCHOOL11   -224.4101    28.7439  -7.807 7.50e-15 ***
## IDSCHOOL12   -212.3076    29.6527  -7.160 9.65e-13 ***
## IDSCHOOL13   -192.7788    30.0977  -6.405 1.69e-10 ***
## IDSCHOOL14     24.4415    27.1195   0.901 0.367511    
## IDSCHOOL15   -273.1820    32.1227  -8.504  < 2e-16 ***
## IDSCHOOL16   -111.3815    21.6471  -5.145 2.81e-07 ***
## IDSCHOOL17    -62.4803    20.2514  -3.085 0.002048 ** 
## IDSCHOOL18   -222.8851    31.7993  -7.009 2.82e-12 ***
## IDSCHOOL19    -82.6938    20.0326  -4.128 3.74e-05 ***
## IDSCHOOL20   -115.7667    19.1491  -6.046 1.63e-09 ***
## IDSCHOOL21    -91.8136    19.6503  -4.672 3.08e-06 ***
## IDSCHOOL22   -161.4220    19.1666  -8.422  < 2e-16 ***
## IDSCHOOL23    -26.9157    19.6415  -1.370 0.170658    
## IDSCHOOL24   -248.9520    34.9701  -7.119 1.29e-12 ***
## IDSCHOOL25   -269.8955    30.9045  -8.733  < 2e-16 ***
## IDSCHOOL26   -231.0698    29.9749  -7.709 1.61e-14 ***
## IDSCHOOL27   -228.1660    29.0260  -7.861 4.93e-15 ***
## IDSCHOOL28   -171.5002    29.0254  -5.909 3.75e-09 ***
## IDSCHOOL29   -197.6484    29.1348  -6.784 1.35e-11 ***
## IDSCHOOL30    -75.3418    31.7472  -2.373 0.017685 *  
## IDSCHOOL31    -13.0635    21.3107  -0.613 0.539912    
## IDSCHOOL32   -216.1971    33.5411  -6.446 1.29e-10 ***
## IDSCHOOL33   -214.2032    30.9207  -6.928 5.01e-12 ***
## IDSCHOOL34   -166.6058    31.9037  -5.222 1.86e-07 ***
## IDSCHOOL35   -199.4504    30.7316  -6.490 9.68e-11 ***
## IDSCHOOL36    -36.5725    29.6700  -1.233 0.217785    
## IDSCHOOL37   -153.5790    21.6620  -7.090 1.59e-12 ***
## IDSCHOOL38   -122.3763    20.2528  -6.042 1.66e-09 ***
## IDSCHOOL39   -102.8905    19.4655  -5.286 1.32e-07 ***
## IDSCHOOL40   -241.9232    29.1288  -8.305  < 2e-16 ***
## IDSCHOOL41   -170.1083    29.5430  -5.758 9.18e-09 ***
## IDSCHOOL42   -218.8778    29.5348  -7.411 1.54e-13 ***
## IDSCHOOL43   -101.5877    18.1954  -5.583 2.53e-08 ***
## IDSCHOOL44   -110.5227    21.6365  -5.108 3.41e-07 ***
## IDSCHOOL45    -48.9798    20.2640  -2.417 0.015692 *  
## IDSCHOOL46   -167.1365    21.0112  -7.955 2.35e-15 ***
## IDSCHOOL47    -24.9385    20.4864  -1.217 0.223558    
## IDSCHOOL48    -58.8125    23.3293  -2.521 0.011743 *  
## IDSCHOOL49    -69.0061    27.1505  -2.542 0.011073 *  
## IDSCHOOL50   -119.2751    20.4804  -5.824 6.23e-09 ***
## IDSCHOOL51    -60.3752    19.8380  -3.043 0.002355 ** 
## IDSCHOOL52    -91.0184    18.6191  -4.888 1.06e-06 ***
## IDSCHOOL53    -92.6960    18.6255  -4.977 6.75e-07 ***
## IDSCHOOL54    -91.2491    20.1220  -4.535 5.94e-06 ***
## IDSCHOOL55   -178.4365    29.9609  -5.956 2.82e-09 ***
## IDSCHOOL56    -75.2859    31.1678  -2.416 0.015760 *  
## IDSCHOOL57   -212.7497    29.0456  -7.325 2.91e-13 ***
## IDSCHOOL58   -244.1387    30.6738  -7.959 2.27e-15 ***
## IDSCHOOL59   -179.8983    29.7873  -6.039 1.69e-09 ***
## IDSCHOOL60    -80.8264    27.1439  -2.978 0.002922 ** 
## IDSCHOOL61   -212.1523    31.1541  -6.810 1.13e-11 ***
## IDSCHOOL62   -224.3607    32.5389  -6.895 6.27e-12 ***
## IDSCHOOL63   -178.3692    30.4673  -5.854 5.19e-09 ***
## IDSCHOOL64    -77.7178    19.3615  -4.014 6.08e-05 ***
## IDSCHOOL65    -85.7908    20.7642  -4.132 3.68e-05 ***
## IDSCHOOL66   -157.7202    18.8879  -8.350  < 2e-16 ***
## IDSCHOOL67   -187.3668    20.0528  -9.344  < 2e-16 ***
## IDSCHOOL68    -97.6625    30.2934  -3.224 0.001275 ** 
## IDSCHOOL69   -237.6441    32.1228  -7.398 1.69e-13 ***
## IDSCHOOL70   -189.3653    31.4294  -6.025 1.85e-09 ***
## IDSCHOOL71   -213.3353    32.0990  -6.646 3.44e-11 ***
## IDSCHOOL72   -237.6141    30.9795  -7.670 2.17e-14 ***
## IDSCHOOL73   -103.5832    18.7389  -5.528 3.46e-08 ***
## IDSCHOOL74   -180.4002    31.8181  -5.670 1.54e-08 ***
## IDSCHOOL75   -128.7442    31.1411  -4.134 3.64e-05 ***
## IDSCHOOL76   -195.8587    29.6587  -6.604 4.56e-11 ***
## IDSCHOOL77   -167.9382    30.9331  -5.429 6.02e-08 ***
## IDSCHOOL78   -218.3677    31.4311  -6.947 4.35e-12 ***
## IDSCHOOL79   -121.1916    18.5088  -6.548 6.62e-11 ***
## IDSCHOOL80    -27.3603    28.3310  -0.966 0.334236    
## IDSCHOOL81    -33.2937    20.7487  -1.605 0.108662    
## IDSCHOOL82   -144.6910    21.6332  -6.688 2.59e-11 ***
## IDSCHOOL83    -94.8394    19.6518  -4.826 1.45e-06 ***
## IDSCHOOL84   -107.9912    17.8779  -6.040 1.68e-09 ***
## IDSCHOOL85   -232.7968    29.7905  -7.814 7.09e-15 ***
## IDSCHOOL86    -89.0222    30.2629  -2.942 0.003285 ** 
## IDSCHOOL87   -295.9578    29.6661  -9.976  < 2e-16 ***
## IDSCHOOL88   -242.6931    29.1240  -8.333  < 2e-16 ***
## IDSCHOOL89   -297.3691    30.5360  -9.738  < 2e-16 ***
## IDSCHOOL90    -99.4294    20.0527  -4.958 7.42e-07 ***
## IDSCHOOL91    -41.3087    19.6548  -2.102 0.035644 *  
## IDSCHOOL92   -103.4714    19.6468  -5.267 1.47e-07 ***
## IDSCHOOL93    -83.8805    21.6472  -3.875 0.000108 ***
## IDSCHOOL94    -90.8921    18.8623  -4.819 1.50e-06 ***
## IDSCHOOL95   -255.7439    30.9057  -8.275  < 2e-16 ***
## IDSCHOOL96   -109.4082    18.5100  -5.911 3.70e-09 ***
## IDSCHOOL97   -134.5168    20.4839  -6.567 5.83e-11 ***
## IDSCHOOL98    -49.5825    18.6027  -2.665 0.007723 ** 
## IDSCHOOL99   -161.4493    19.4639  -8.295  < 2e-16 ***
## IDSCHOOL100   -39.5154    20.2618  -1.950 0.051221 .  
## IDSCHOOL101  -265.6481    29.9325  -8.875  < 2e-16 ***
## IDSCHOOL102  -150.6188    30.9006  -4.874 1.14e-06 ***
## IDSCHOOL103  -201.2527    31.4335  -6.402 1.71e-10 ***
## IDSCHOOL104  -157.9063    29.9329  -5.275 1.40e-07 ***
## IDSCHOOL105  -111.2279    20.7386  -5.363 8.66e-08 ***
## IDSCHOOL106   -63.1663    20.7471  -3.045 0.002346 ** 
## IDSCHOOL107   -41.3020    20.0431  -2.061 0.039403 *  
## IDSCHOOL108  -183.8571    21.6407  -8.496  < 2e-16 ***
## IDSCHOOL109   -99.8319    25.2678  -3.951 7.93e-05 ***
## IDSCHOOL110  -141.4913    21.6517  -6.535 7.21e-11 ***
## IDSCHOOL111   -72.5036    21.0144  -3.450 0.000566 ***
## IDSCHOOL112  -205.8807    31.4537  -6.546 6.72e-11 ***
## IDSCHOOL113  -184.3107    32.5234  -5.667 1.56e-08 ***
## IDSCHOOL114  -254.6444    29.8245  -8.538  < 2e-16 ***
## IDSCHOOL115  -235.8904    29.2068  -8.077 8.85e-16 ***
## IDSCHOOL116  -246.9488    28.4170  -8.690  < 2e-16 ***
## IDSCHOOL117  -279.2137    30.9313  -9.027  < 2e-16 ***
## IDSCHOOL118  -222.8378    29.3208  -7.600 3.71e-14 ***
## IDSCHOOL119  -206.2847    31.4849  -6.552 6.44e-11 ***
## IDSCHOOL120  -205.8994    30.2886  -6.798 1.23e-11 ***
## IDSCHOOL121  -206.3966    43.4907  -4.746 2.15e-06 ***
## IDSCHOOL122   -47.7691    19.4745  -2.453 0.014215 *  
## IDSCHOOL123   -42.0809    24.5502  -1.714 0.086596 .  
## IDSCHOOL124  -180.2553    32.5117  -5.544 3.15e-08 ***
## IDSCHOOL125    36.6256    26.2351   1.396 0.162781    
## IDSCHOOL126  -166.8919    30.6709  -5.441 5.62e-08 ***
## IDSCHOOL127  -142.1368    30.6830  -4.632 3.73e-06 ***
## IDSCHOOL128  -204.4069    30.2871  -6.749 1.71e-11 ***
## IDSCHOOL129   -20.4478    31.4406  -0.650 0.515497    
## IDSCHOOL130   -85.9765    20.2651  -4.243 2.26e-05 ***
## IDSCHOOL131  -244.9237    30.7311  -7.970 2.08e-15 ***
## IDSCHOOL132  -131.6692    30.1035  -4.374 1.25e-05 ***
## IDSCHOOL133   -27.4551    29.5752  -0.928 0.353303    
## IDSCHOOL134  -230.1703    29.3145  -7.852 5.29e-15 ***
## IDSCHOOL135  -266.9920    29.5617  -9.032  < 2e-16 ***
## IDSCHOOL136   -46.9328    19.0032  -2.470 0.013565 *  
## IDSCHOOL137  -178.4686    20.0394  -8.906  < 2e-16 ***
## IDSCHOOL138   -82.4303    18.5040  -4.455 8.64e-06 ***
## IDSCHOOL139   -61.6431    18.7374  -3.290 0.001012 ** 
## IDSCHOOL140  -133.7644    31.1460  -4.295 1.79e-05 ***
## IDSCHOOL141   -34.3658    20.2764  -1.695 0.090182 .  
## IDSCHOOL142   -83.0082    19.4607  -4.265 2.04e-05 ***
## IDSCHOOL143     5.3867    18.7482   0.287 0.773885    
## IDSCHOOL144   -91.4986    21.0176  -4.353 1.38e-05 ***
## IDSCHOOL145  -321.8597    30.4167 -10.582  < 2e-16 ***
## IDSCHOOL146  -252.0456    33.5379  -7.515 7.04e-14 ***
## IDSCHOOL147  -156.4201    31.4454  -4.974 6.84e-07 ***
## IDSCHOOL148  -161.4533    30.9026  -5.225 1.84e-07 ***
## IDSCHOOL149   -67.3991    19.8438  -3.396 0.000690 ***
## IDSCHOOL150  -101.2185    21.6670  -4.672 3.09e-06 ***
## IDSCHOOL151   -96.3190    21.0207  -4.582 4.75e-06 ***
## IDSCHOOL152  -161.9275    30.4564  -5.317 1.12e-07 ***
## IDSCHOOL153  -204.9136    34.1972  -5.992 2.26e-09 ***
## IDSCHOOL154  -229.6931    31.1509  -7.374 2.03e-13 ***
## IDSCHOOL155     7.0913    29.8021   0.238 0.811936    
## IDSCHOOL156   -77.0973    27.1307  -2.842 0.004511 ** 
## IDSCHOOL157   -29.1180    23.3547  -1.247 0.212559    
## IDSCHOOL158  -152.7382    18.6626  -8.184 3.70e-16 ***
## IDSCHOOL159   -57.6475    19.4803  -2.959 0.003103 ** 
## IDSCHOOL160  -207.9735    32.5168  -6.396 1.79e-10 ***
## IDSCHOOL161  -218.7214    30.1009  -7.266 4.46e-13 ***
## IDSCHOOL162  -202.6801    29.2050  -6.940 4.59e-12 ***
## IDSCHOOL163  -208.3977    29.5601  -7.050 2.12e-12 ***
## IDSCHOOL164  -212.3900    28.8038  -7.374 2.03e-13 ***
## IDSCHOOL165  -113.3317    19.0134  -5.961 2.74e-09 ***
## IDSCHOOL166  -132.6207    19.0074  -6.977 3.53e-12 ***
## IDSCHOOL167  -113.9466    18.8790  -6.036 1.73e-09 ***
## IDSCHOOL168    20.5817    31.6594   0.650 0.515669    
## IDSCHOOL169   -73.4146    29.7949  -2.464 0.013783 *  
## IDSCHOOL170  -237.1133    31.5254  -7.521 6.72e-14 ***
## IDSCHOOL171  -227.7551    31.7692  -7.169 9.03e-13 ***
## IDSCHOOL172  -177.3039    29.7854  -5.953 2.88e-09 ***
## IDSCHOOL173  -180.6617    30.6746  -5.890 4.21e-09 ***
## IDSCHOOL174  -113.7495    18.8732  -6.027 1.83e-09 ***
## IDSCHOOL175  -261.4133    33.1102  -7.895 3.76e-15 ***
## IDSCHOOL176   -63.3139    31.7585  -1.994 0.046266 *  
## IDSCHOOL177  -195.9926    29.9618  -6.541 6.90e-11 ***
## IDSCHOOL178  -179.5935    30.9172  -5.809 6.80e-09 ***
## IDSCHOOL179  -197.4734    32.5243  -6.072 1.39e-09 ***
## IDSCHOOL180   -56.6853    19.3003  -2.937 0.003334 ** 
## IDSCHOOL181  -108.5058    19.8363  -5.470 4.79e-08 ***
## IDSCHOOL182   -77.5054    19.8266  -3.909 9.42e-05 ***
## IDSCHOOL183  -147.2850    18.2900  -8.053 1.07e-15 ***
## IDSCHOOL184   -93.1731    22.8623  -4.075 4.69e-05 ***
## IDSCHOOL185   -67.2483    21.3066  -3.156 0.001611 ** 
## IDSCHOOL186   -26.3091    22.8444  -1.152 0.249531    
## IDSCHOOL187  -183.0709    32.9836  -5.550 3.05e-08 ***
## IDSCHOOL188         NA         NA      NA       NA    
## IDSCHOOL189   -62.7300    23.3265  -2.689 0.007193 ** 
## ASBM01A        -1.2465     1.0091  -1.235 0.216821    
## ASBM01B         5.4427     0.8168   6.663 3.06e-11 ***
## ASBM01C         3.3847     0.7857   4.308 1.69e-05 ***
## ASBM01D        -2.0998     0.8208  -2.558 0.010558 *  
## ASBM01E        -1.3600     1.0210  -1.332 0.182944    
## ASBM01F         0.6827     0.9900   0.690 0.490517    
## ASBM01G         0.3844     1.1435   0.336 0.736757    
## ASBM01H        -1.5915     1.1816  -1.347 0.178103    
## ASBM01I        -6.1758     1.2046  -5.127 3.10e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 69.33 on 3811 degrees of freedom
##   (328 observations deleted due to missingness)
## Multiple R-squared:  0.4289, Adjusted R-squared:  0.3994 
## F-statistic: 14.53 on 197 and 3811 DF,  p-value: < 2.2e-16
histogram(~ ASMMAT03 |ITSEX, data = dtfile)

histogram(~ ASMMAT03 | IDSCHOOL, data = dtfile)

boxplot(ASMMAT03 ~ IDSCHOOL, data = dtfile)

plotSlopes(Regression_Model, plotx = "ASBM01B", modx = "IDSCHOOL")
## Warning in predict.lm(structure(list(coefficients =
## structure(c(562.759500659585, : prediction from a rank-deficient fit may be
## misleading

Base Multilevel Model

first.model <- lmer(ASMMAT03 ~  (1| IDSCHOOL), data = dtfile)

summary(first.model)
## Linear mixed model fit by REML ['lmerMod']
## Formula: ASMMAT03 ~ (1 | IDSCHOOL)
##    Data: dtfile
## 
## REML criterion at convergence: 49816.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6407 -0.6667 -0.0045  0.6857  3.6889 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  IDSCHOOL (Intercept) 3340     57.79   
##  Residual             5071     71.21   
## Number of obs: 4337, groups:  IDSCHOOL, 189
## 
## Fixed effects:
##             Estimate Std. Error t value
## (Intercept)  387.661      4.359   88.93
icc(first.model)
## 
## Linear mixed model
##  Family: gaussian (identity)
## Formula: ASMMAT03 ~ (1 | IDSCHOOL)
## 
##   ICC (IDSCHOOL): 0.397096
outreg(list("Model1"= first.model), type = "html", browse = TRUE)
## 
##  Temp file:  /var/folders/nt/strrwnzj3_92_s8t4_4qfl100000gn/T//RtmpQGYvFq/file74f41cb46b99.html
### Plottig this model

basemodel <- ranef(first.model, condVar=TRUE)

dotplot(basemodel)
## $IDSCHOOL

ggplot(data = dtfile[as.numeric(dtfile$IDSCHOOL)<=20,], aes(x=IDSCHOOL, y=ASMMAT03)) + geom_point() + facet_wrap(~IDSCHOOL)

ggplot(data = dtfile[as.numeric(dtfile$IDSCHOOL)<=20,], aes(x=IDSCHOOL, y=ASMMAT03)) + geom_boxplot() + facet_wrap(~IDSCHOOL)

Second Model

second.model <- lmer(ASMMAT03 ~ ITSEX + ASBM01A
                     + ASBM01B + ASBM01C + ASBM01D + ASBM01E + ASBM01F
                     + ASBM01G + ASBM01H + ASBM01I + ( 1| IDSCHOOL),  dtfile, REML = FALSE)

summary(second.model)
## Linear mixed model fit by maximum likelihood  ['lmerMod']
## Formula: 
## ASMMAT03 ~ ITSEX + ASBM01A + ASBM01B + ASBM01C + ASBM01D + ASBM01E +  
##     ASBM01F + ASBM01G + ASBM01H + ASBM01I + (1 | IDSCHOOL)
##    Data: dtfile
## 
##      AIC      BIC   logLik deviance df.resid 
##  45854.1  45936.0 -22914.1  45828.1     3996 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.7476 -0.6684 -0.0062  0.6772  3.6552 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  IDSCHOOL (Intercept) 2677     51.74   
##  Residual             4798     69.27   
## Number of obs: 4009, groups:  IDSCHOOL, 189
## 
## Fixed effects:
##             Estimate Std. Error t value
## (Intercept) 432.1607    12.8660  33.589
## ITSEX       -32.6655     7.9124  -4.128
## ASBM01A      -1.0687     1.0047  -1.064
## ASBM01B       5.4329     0.8133   6.680
## ASBM01C       3.3859     0.7825   4.327
## ASBM01D      -2.1003     0.8180  -2.567
## ASBM01E      -1.5907     1.0172  -1.564
## ASBM01F       0.6748     0.9860   0.684
## ASBM01G       0.3645     1.1395   0.320
## ASBM01H      -1.6865     1.1777  -1.432
## ASBM01I      -6.1159     1.2006  -5.094
## 
## Correlation of Fixed Effects:
##         (Intr) ITSEX  ASBM01A ASBM01B ASBM01C ASBM01D ASBM01E ASBM01F
## ITSEX   -0.932                                                       
## ASBM01A -0.040 -0.001                                                
## ASBM01B -0.104  0.025 -0.018                                         
## ASBM01C -0.098  0.018  0.037  -0.467                                 
## ASBM01D  0.012 -0.014 -0.107  -0.080  -0.013                         
## ASBM01E  0.030 -0.019 -0.157   0.002  -0.089  -0.109                 
## ASBM01F  0.015 -0.008 -0.042  -0.050  -0.087  -0.119  -0.125         
## ASBM01G  0.010 -0.003 -0.114  -0.054  -0.002  -0.070  -0.221  -0.197 
## ASBM01H  0.008 -0.012 -0.083   0.002  -0.020  -0.137  -0.154  -0.132 
## ASBM01I -0.008 -0.003 -0.067  -0.021  -0.014  -0.085  -0.144  -0.167 
##         ASBM01G ASBM01H
## ITSEX                  
## ASBM01A                
## ASBM01B                
## ASBM01C                
## ASBM01D                
## ASBM01E                
## ASBM01F                
## ASBM01G                
## ASBM01H -0.219         
## ASBM01I -0.215  -0.374
confint(second.model)
## Computing profile confidence intervals ...
##                  2.5 %      97.5 %
## .sig01       46.382920  58.0215589
## .sigma       67.741230  70.8501223
## (Intercept) 406.842246 457.5219032
## ITSEX       -48.266788 -17.0891826
## ASBM01A      -3.038501   0.9014459
## ASBM01B       3.838506   7.0273649
## ASBM01C       1.851740   4.9199857
## ASBM01D      -3.703966  -0.4965415
## ASBM01E      -3.585668   0.4037699
## ASBM01F      -1.258206   2.6076993
## ASBM01G      -1.869400   2.5983604
## ASBM01H      -3.995614   0.6223680
## ASBM01I      -8.469653  -3.7619871
outreg(list("Model2"= second.model), type = "html", browse = TRUE)
## 
##  Temp file:  /var/folders/nt/strrwnzj3_92_s8t4_4qfl100000gn/T//RtmpQGYvFq/file74f46be68d57.html

Thrid Model

third.model <- lmer(ASMMAT03 ~  ITSEX + ASBM01B + ASBM01C + ASBM01D + ASBM01I + (1|IDSCHOOL), data = dtfile)

summary(third.model)
## Linear mixed model fit by REML ['lmerMod']
## Formula: ASMMAT03 ~ ITSEX + ASBM01B + ASBM01C + ASBM01D + ASBM01I + (1 |  
##     IDSCHOOL)
##    Data: dtfile
## 
## REML criterion at convergence: 47222.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6807 -0.6555 -0.0090  0.6742  3.7063 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  IDSCHOOL (Intercept) 2730     52.25   
##  Residual             4788     69.20   
## Number of obs: 4134, groups:  IDSCHOOL, 189
## 
## Fixed effects:
##             Estimate Std. Error t value
## (Intercept) 432.7624    12.9276  33.476
## ITSEX       -33.2709     7.9645  -4.177
## ASBM01B       5.0614     0.7762   6.521
## ASBM01C       3.2700     0.7392   4.424
## ASBM01D      -2.9589     0.7302  -4.052
## ASBM01I      -7.6560     0.7836  -9.770
## 
## Correlation of Fixed Effects:
##         (Intr) ITSEX  ASBM01B ASBM01C ASBM01D
## ITSEX   -0.934                               
## ASBM01B -0.100  0.023                        
## ASBM01C -0.091  0.015 -0.474                 
## ASBM01D  0.022 -0.027 -0.127  -0.073         
## ASBM01I  0.016 -0.037 -0.115  -0.136  -0.536
confint(third.model)
## Computing profile confidence intervals ...
##                  2.5 %     97.5 %
## .sig01       46.584927  58.205973
## .sigma       67.662592  70.716982
## (Intercept) 407.444768 458.096002
## ITSEX       -48.881110 -17.670849
## ASBM01B       3.540553   6.582151
## ASBM01C       1.821297   4.718246
## ASBM01D      -4.389887  -1.528503
## ASBM01I      -9.192718  -6.121648
outreg(list("Model3"= third.model), type = "html", browse = TRUE)
## 
##  Temp file:  /var/folders/nt/strrwnzj3_92_s8t4_4qfl100000gn/T//RtmpQGYvFq/file74f474fc2db5.html
third.model1<-ranef(third.model, condVar=TRUE)

dotplot(third.model1)
## $IDSCHOOL