# Input data contained in the Higgins1990-Table1.csv file distributed with ARTool
# The data were used in the 1990 paper cited in the References section

data(higgins1990, package = "ART")

library(ARTool)
## Warning: package 'ARTool' was built under R version 3.4.4
library(ART)
## Warning: package 'ART' was built under R version 3.4.4
# Two-factor full factorial model that will be fitted to the data

art.results = aligned.rank.transform(Response ~ Row * Column, data = data.higgins1990)
print(art.results$aligned, digits = 4)
##    Row Column Response Aligned_Row Aligned_Column Aligned_Row_Column
## 1    1      1     11.5     3.35208        -1.2812            2.12500
## 2    1      1     10.1     1.95208        -2.6812            0.72500
## 3    1      1      9.9     1.75208        -2.8812            0.52500
## 4    1      1     10.6     2.45208        -2.1812            1.22500
## 5    1      2      9.0     3.49583        -4.1625            2.65000
## 6    1      2      7.4     1.89583        -5.7625            1.05000
## 7    1      2      8.8     3.29583        -4.3625            2.45000
## 8    1      2      8.8     3.29583        -4.3625            2.45000
## 9    1      3      3.8     0.93958        -9.7437            0.47500
## 10   1      3      6.3     3.43958        -7.2437            2.97500
## 11   1      3      4.9     2.03958        -8.6437            1.57500
## 12   1      3      5.3     2.43958        -8.2437            1.97500
## 13   2      1      9.9     1.37083        -4.8708           -1.08333
## 14   2      1      9.8     1.27083        -4.9708           -1.18333
## 15   2      1      9.3     0.77083        -5.4708           -1.68333
## 16   2      1      9.1     0.57083        -5.6708           -1.88333
## 17   2      2      9.3     3.03333        -6.2333            1.34167
## 18   2      2      7.4     1.13333        -8.1333           -0.55833
## 19   2      2      7.7     1.43333        -7.8333           -0.25833
## 20   2      2      7.9     1.63333        -7.6333           -0.05833
## 21   2      3      4.1     0.09583       -12.1958           -0.83333
## 22   2      3      6.3     2.29583        -9.9958            1.36667
## 23   2      3      5.5     1.49583       -10.7958            0.56667
## 24   2      3      5.4     1.39583       -10.8958            0.46667
## 25   3      1     13.9     4.98958        -2.8604            1.30833
## 26   3      1     16.0     7.08958        -0.7604            3.40833
## 27   3      1     14.2     5.28958        -2.5604            1.60833
## 28   3      1     15.2     6.28958        -1.5604            2.60833
## 29   3      2     13.0     5.97083        -4.9042            3.43333
## 30   3      2     13.4     6.37083        -4.5042            3.83333
## 31   3      2     11.2     4.17083        -6.7042            1.63333
## 32   3      2     12.8     5.77083        -5.1042            3.23333
## 33   3      3      9.6     4.45208        -9.4479            3.05833
## 34   3      3      9.6     4.45208        -9.4479            3.05833
## 35   3      3     11.0     5.85208        -8.0479            4.45833
## 36   3      3     13.4     8.25208        -5.6479            6.85833
##    Ranks_Row Ranks_Column Ranks_Row_Column
## 1       22.0         35.0             23.0
## 2       14.0         31.0             13.0
## 3       12.0         29.0             11.0
## 4       18.0         33.0             15.0
## 5       24.0         28.0             27.0
## 6       13.0         17.0             14.0
## 7       20.5         26.5             24.5
## 8       20.5         26.5             24.5
## 9        4.0          5.0             10.0
## 10      23.0         14.0             28.0
## 11      15.0          8.0             19.0
## 12      17.0          9.0             22.0
## 13       7.0         24.0              4.0
## 14       6.0         22.0              3.0
## 15       3.0         20.0              2.0
## 16       2.0         18.0              1.0
## 17      19.0         16.0             17.0
## 18       5.0         10.0              6.0
## 19       9.0         12.0              7.0
## 20      11.0         13.0              8.0
## 21       1.0          1.0              5.0
## 22      16.0          4.0             18.0
## 23      10.0          3.0             12.0
## 24       8.0          2.0              9.0
## 25      28.0         30.0             16.0
## 26      35.0         36.0             32.0
## 27      29.0         32.0             20.0
## 28      33.0         34.0             26.0
## 29      32.0         23.0             33.0
## 30      34.0         25.0             34.0
## 31      25.0         15.0             21.0
## 32      30.0         21.0             31.0
## 33      26.5          6.5             29.5
## 34      26.5          6.5             29.5
## 35      31.0         11.0             35.0
## 36      36.0         19.0             36.0
print(art.results$significance)
##              Sum Sq Df    F value      Pr(>F)
## Row        146.7202  1  1.6915027 0.202691776
## Column     414.8571  1 11.3108716 0.002011463
## Row:Column  22.5625  1  0.2388043 0.628403463