Problem 1.
Use integration by substitution to solve the integral below.
\(\int { 4 } { e }^{ -7x }{ dx }\)
\(=\ 4\int { { e }^{ -7x }{ dx } }\)
Substitute and recall that integral of en is en:
\(u\ =\ -7x,\ du\ =\ -7dx\ or -\frac { 1 }{ 7 } du = dx\)
\(= -\frac { 4 }{ 7 } \int { { e }^{ u }{ dx } }\)
\(= -\frac { 4 }{ 7 } { e }^{ u }\)
Resubstitute for u:
\(=-\frac { 4 }{ 7 } { e }^{ -7x }\)
Problem 2.
Biologists are treating a pond contaminated with bacteria. The level of contamination is changing at a rate of \(\frac { dN }{ dt } =\quad -\frac { 3150 }{ { t }^{ 4 } } -220\) bacteria per cubic centimeter per day, where t is the number of days since treatment began. Find a function N(t) to estimate the level of contamination if the level after 1 day was 6530 bacteria per cubic centimeter.
A. We integrate over the given velocity function:
\(\int { -3150{ t }^{ -4 } } -220\ dt\\\)
\(=\ -3150\int { { t }^{ -4 } } -220\ dt\\\)
\(=\ -3150\ \cdot \ -\frac { 1 }{ 3{ t }^{ 3 } } \ -\ 220\int { 1\ dt } \\\)
\(=\ -1050{ t }^{ -3 }\ -220t\ +\ 6530\)
\(\ 6530\ =\ -1050{ t }^{ -3 }\ -220t\ +\ C\)
\(\ 6530\ =\ -1270\ +\ C\)
\(\ C\ =\ 5260\)
\(\ N(t)\ =\ -1050{ t }^{ -3 }\ -220t\ +\ 5260\)
Problem 3:
Find the total area of the red rectangles in the figure below, where the equation of the line is f(x) = 2x-9.
A. Use Reimman Sums, although we have a strange interval, [4.5, 8.5]. Because our function bisects the height of each rectangle at midpoint, we will use the midpoint rule. This takes many steps.
\(\Delta x\ =\ \frac { b-a }{ n } =\frac { 8.4-4.5 }{ 4 } =1\)
\({ x }_{ i\ }=\ a+(i-1)\cdot \Delta x\ =\ 4.5+1\cdot (i-1)\ =\ i+3.5\)
\({ x }_{ i+1 }\ =\ i+1+3,5\ =\ i+4.5\)
\(\frac { { x }_{ i }{ +x }_{ i+1 } }{ 2 } =\frac { (i+3.5)\ +\ (i+4.5) }{ 2 } \ =\ i+4\)
\(\int _{ 4.5 }^{ 8.5 }{ 2x-9\ dx\ \approx } \ \sum _{ i=1 }^{ 4 }{ f( } \frac { { x }_{ i }{ +x }_{ i+1 } }{ 2 } )\ \Delta x\)
\(=\sum _{ i=1 }^{ 4 }{ f( } i+4)\ \Delta x\)
\(=\sum _{ i=1 }^{ 4 }{ f( } 2(i+4)-9)\ \Delta x\)
\(=\sum _{ i=1 }^{ 4 }{ f( } 2i-1)\ \Delta x\)
\(=\ \Delta x\ (2\cdot \sum _{ i=1 }^{ 4 }{ i\ } -\sum _{ i=1 }^{ 4 }{ 1 } )\)
\(=\ 1\cdot 2(\frac { 4\cdot 5 }{ 2 } )-4\cdot 1\)
\(=\ 16\)
Problem 4
Find the area of the region bounded by the graphs of the given equations.
y=x2-2x-2, y=x+2
First, plot it, then integrate and follow Theorem 52:
g <- makeFun(c^2-2*c-2 ~ c)
g2 <- makeFun(c+2 ~ c)
plotFun(g(x) ~ x, x.lim = range(-2,5), lwd=5)plotFun(g2(x) ~ x, add=TRUE, x.lim = range(-2,5), lwd=5, col='red')ladd(panel.abline(v=0, col='gray50'))ladd(panel.abline(h=0, col='gray50'))ladd(panel.abline(v=-1, col='gray50'))ladd(panel.abline(v=4, col='gray50'))Area equals 20.8 units per R integration below.
integrandG <- function(x){x^2-2*x-2}
G <- integrate(integrandG, lower = -1, upper = 4)
integrandG2 <- function(x){x+2}
G2 <- integrate(integrandG2, lower = -1, upper = 4)
abs(G2$value-G$value)## [1] 20.83333